
The Journal of Undergraduate Neuroscience Education (JUNE), Winter 2024, 22(2):A99-A103

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org

ARTICLE
Integrating Programming into Neuroscience Courses

Ashley L. Juavinett
Neurobiology Department, University of California, San Diego, La Jolla, CA 92037.
https://doi.org/10.59390/PYYP5010

Programming is a useful skill for students, both in
neuroscience research and in the broader economy. Many
instructors, however, may wonder how and when they
should integrate it into their coursework, especially if they
themselves have limited computational training. The
suggestions offered here aim to help a wide range of
educators — even those who have minimal coding
experience — who wish to expose their students to the
intersection of neuroscience and programming. Throughout,
I provide examples of how I have weaved coding into various
elements of neuroscience courses, even those without a

computational focus. I also discuss the rich landscape of
low-cost, accessible programming tools as well as how
generative AI can (and should) impact the way that we are
teaching programming. Ultimately, the goal is not to insist
that all our students learn how to code, but rather to lower
barriers and provide exposure and opportunity to any
student who wishes to integrate programming into their
research or careers.

 Key words: programming, computational, quantitative,
laboratory courses

Like most STEM fields as well as the broader economy,
neuroscience research is increasingly reliant on
programming. Datasets are larger and more complex,
computational models contain multitudes, and open science
is making it possible for anyone to dig in (Sejnowski et al.,
2014; Paninski and Cunningham, 2018). As myself and
others have argued over the years, these changes are
necessitating changes in both undergraduate and graduate
education (Akil et al., 2016; Grisham et al., 2016, 2017;
Juavinett, 2022). To work in these rapidly expanding
intersections, students need strong quantitative
foundations, such as statistics and data science, alongside
practical skills such as programming. In this article, I focus
on the latter, exploring three different ways that educators
can integrate programming into their neuroscience curricula.
 Despite the clear importance of offering exposure to
coding, there are a variety of barriers, from limited course
offerings to instructor knowledge of coding (Juavinett, 2022;
Casimo, 2023). In addition, there are attitudinal barriers,
especially from students who have been historically (and
continue to be) excluded from coding (Margolis and Fisher,
2003; Cheryan et al., 2009, 2015; Lewis et al., 2016). To
ensure that neither instructors nor their students are left
behind, we need to consider each of these challenges as we
build innovative programming curricula. The hope here is to
provide a starting guide for instructors who wish to integrate
programming into their courses but are not sure where to
start.

TOOLS FOR INTEGRATING PROGRAMMING
While pervasive stereotypes about who codes as well as
access to computing courses continue to interfere with
inclusion, other more logistical barriers have been
significantly reduced in recent years. Specifically, there are
many different platforms on which students and educators
can learn how to code, and these environments support a
variety of languages. Thus, educators have two choices
when getting started: programming language and platform.

Choice of Programming Language
Programming languages differ in their syntax (the rules of
the language), speed, and usage. While there is not one
best programming language to learn for neuroscientists,
there are important considerations: ease of readability, cost
and accessibility, and use within our discipline. There are
lower-level, more difficult to read languages (such as Java)
and languages which are higher-level and easier to read
(such as Python, R, and MATLAB). For programming
beginners who are budding neuroscience researchers,
these higher-level languages are generally a better choice.
Second, some computing platforms (e.g., MATLAB) are
expensive and therefore cost prohibitive for institutions or
students without licenses. On the other hand, languages
such as Python and R are open source and free for students
to use.
 An additional consideration is the prevalence of a
language in neuroscience research. While this is a tough
feature to assess quantitively, MATLAB and Python are both
commonly used for data analysis, visualization, and
computational modeling, while R is often used for statistics
as well as bioinformatics (Muller et al., 2015; Schlafly et al.,
2020; Grisham et al., 2021). Relatedly, we can consider the
utility of a language in the broader workforce — another
tough aspect to assess and constantly changing —
however, Python and R are both defensible choices when it
comes to data science or related fields.
 A final and important consideration in this context is an
instructor’s experience with a given language. It is a very big
ask for someone to switch languages entirely for the
purposes of teaching, especially without time or incentives.
It is therefore understandable for an instructor to choose the
language they know best. Instructors seeking to improve
their own programming knowledge are strongly encouraged
to seek out training such as that offered through The
Carpentries (https://carpentries.org/), which also offers
instructor training, or other online resources (e.g.,
DataCamp).

Juavinett Integrating programming into neuroscience courses A100

 Considering each of these factors, I predominantly teach
Python in my classes while many of my colleagues in biology
focus on R. That said, I will not begrudge any instructor for
choosing the language that is most comfortable for them —
in reality, any coding language is a great place to start. In
my opinion, the most important consideration is that
instructors do not engender fear about programming, but
rather empower their students to learn, to make mistakes,
and to ask questions, so that they too can build self-efficacy
in programming.

Choice of Programming Environment
Educators also need to decide on the best programming
environment for their students. Programming can be taught
using offline or online tools. Traditional computing education
teaches line-by-line coding in the terminal or by running
short scripts, while more modern computing education takes
advantage of free online tools or user-friendly integrated
development environments (IDEs). These IDEs (e.g.,
MATLAB, R Studio, or VS Code), usefully contain a
command prompt, an area to write scripts, and windows to
show outputs or the contents of current variables.
 In the past decade, there has also been a proliferation of
free online platforms (essentially lightweight IDEs) which
have made it possible for anyone with an internet connection
to try programming. For example, free cloud computing tools
such as Google Colab (http://colab.research.google.com)
and Binder (http://mybinder.org) have made it such that
students and departments do not need to download hefty

software onto their computers. Google Colab and Binder
allow students to both review explanatory markdown text
and interact with live code which can be pre-written. In this
article, I refer to such cloud computing notebooks,
regardless of where they are hosted, as simply “coding
notebooks.” Even MATLAB has developed an online
computing environment, a clever workaround for what is
otherwise a large program to install. Further easing logistical
barriers, such online platforms run in a browser and
therefore work on tablets as well as laptops.
 Inspired by other instructors at my institution, I primarily
teach programming in coding notebooks, which have
partially written code that is completed with live coding in
class. These notebooks are hosted on GitHub
(www.github.com), a common place for professionals to
post their code, and run on our institution’s JupyterHub or
run via Google Colab.

THREE INTEGRATION STRATEGIES
With this motivation in mind and using widely available tools,
here I offer three possible ways of integrating programming
into neuroscience curricula, with concrete examples (Table
1). Each of these strategies are designed for students with
limited or no programming backgrounds, though some
statistical understanding will be useful for programming for
data analysis. These approaches can be implemented using
free computing platforms such as Google Colab, which are
especially useful without institutional support for a locally
hosted JupyterHub (or similar computational platform).

 Exposure to coding in
coursework

Integration of coding in coursework Discipline-based coding classes

Learning
Outcomes

Students

will be
able to:

 Recognize use cases
for programming in
neuroscience

 Edit provided code
examples, often to
generate figures or
analyze data

Previous column, plus:
 Write additional code based on

provided examples
 Edit code to address a research

question

Previous column, plus:
 Design coding workflows to address a data

analysis challenge
and/or
 Write code to illustrate a computational

model

Time
required

< 1 hour > 1 hour One semester/ quarter

Instructor
comfort
with
coding

Novice: Instructors can
troubleshoot basics of
coding notebooks and

simple examples

Novice: Instructors can troubleshoot more
complex code examples

Expert: Instructors can explain mechanics of
code, troubleshoot complex code, write

additional examples and problem sets for
students, and write code to analyze

neuroscience data

Examples
 Implementation in a

laboratory course:
https://bipn145.github.io/

 Analysis of Allen Institute cell types
data: Juavinett, 2020;
http://github.com/ajuavinett/
CellTypesLesson/ and Ho et al., 2021

 Bioinformatics module: Madlung, 2018

 Introductory computing for biologists:
http://www.github.com/BILD62 or
Libeskind-Hadas and Bush, Computing for
Biologists (see also Dodds et al., 2012)

 “Case studies in Python”: https://mark-
kramer.github.io/Case-Studies-Python

 Advanced coursework: Neuromatch
Academy https://compneuro.neuromatch.io

Table 1. Three different strategies to integrate programming into neuroscience courses, along with their learning objectives, time required,
the recommended level of instructor coding background, and resources with examples.

The Journal of Undergraduate Neuroscience Education (JUNE), Winter 2024, 22(2):A99-A103 A101

Figure 1. Examples of output from a curve-fitting notebook. Left: Screenshot of the prompt to input data. Right: Real student data and the
figure, with fitted hyperbolic curve, that is initially generated. Students are required to input their own axes labels onto the figure.

Exposure to Coding in Coursework
Many neuroscience instructors do not have the time in their
courses nor the training themselves to lead in-depth
programming exercises. There are, however, several
lightweight ways to integrate coding in such a way that
students are at least exposed to the intersection of
programming of neuroscience and related fields.
 First, instructors can pull back the curtain on how
particular data analyses are done, the workflows in their own
lab, or their own experience with coding. For example, a
common example in neuroscience might be showing tuning
curves and illustrating how they are computed. While these
tuning curves were done by hand for many decades, now
they are generated using custom-written software programs.
Even explicitly making this point to students can be a way to
illustrate how the “everyday neuroscientist” is using
programming tools – a point that may be lost on students.
Similarly, when introducing techniques like
electroencephalography (EEG) or functional magnetic
resonance imaging (fMRI), instructors may highlight that
researchers use large, custom toolboxes written in various
programming languages to analyze these kinds of data.
 Instructors may also choose to take this one step further
by inviting students to analyze their own data using
programming notebooks. This is most appropriate in a
laboratory course but could also be a very short example in
other contexts. For example, instructors that are teaching
about reaction times or simple psychophysics could spend
20 minutes in class asking students to assess their own
auditory and visual reaction times and input these into a
class dataset and ultimately a coding notebook for data
visualization and hypothesis testing. Relatedly, coding
notebooks can be great sandboxes to introduce statistical
concepts such as the central limit theorem.
 In a laboratory course, instructors can provide pre-written
notebooks that students use to input their data, generate
visualizations, and run statistics. In a Neurobiology
Laboratory that I teach, we collect data from the medial giant
fiber of the earthworm, a common model for teaching
extracellular electrophysiology and fundamental properties
of neurons, especially cable theory (Kladt et al., 2010;
Bähring and Bauer, 2014). In this experiment, students are

tasked with generating a strength-duration curve, which
illustrates that nerves require longer stimulus durations
when less current is administered. Students also use these
data to estimate a rheobase and chronaxie. The strength-
duration curve follows a hyperbolic function, which can be
used to derive the rheobase and chronaxie directly (Bähring
and Bauer, 2014).
 Microsoft Excel, however, does not offer a hyperbolic
curve in their curve fitting toolbox. Therefore, we have
generated a notebook where students input their data and
fit this curve (Figure 1; a complete notebook can be found at
https://bipn145.github.io/Python/FitCurve.html). This curve
fitting notebook also illustrates the curve with ideal,
hypothetical data, helping students build an intuition for
curve fitting more broadly. In our implementation, students
only modify two parts of the code: a list containing their own
data and the axes labels. Even with this small example they
can identify the limitations of Excel and the utility of using
programming to analyze their data.
 If there are enough use cases for such notebooks,
instructors can even build a full, online book with different
pages for different exercises. An example of such a book,
built using JupyterBook (https://jupyterbook.org/), can be
found at http://bipn145.github.io. Instructors can use the
source code for this book to build their own.

Integration of Coding into Coursework
Alternatively, instructors may feel empowered to integrate
programming directly into their coursework, even expecting
students to write their own code from scratch. Instructors
could spend one or more course or laboratory sessions
dedicated to introducing students to fundamental coding
concepts, such as creating variables or generating plots.
The goal here is not to teach students everything they need
to know about programming, but rather to illustrate its use
and empower students to learn more through carefully
chosen examples.
 An example of such a strategy has been illustrated in a
number of publications, for example in using open datasets
to teach coding alongside neurobiology concepts or to teach
bioinformatics (Juavinett, 2020; Ho et al., 2021; Madlung,
2018). In each of these, instructors should define the coding-

Juavinett Integrating programming into neuroscience courses A102

specific learning objectives for students, who may be
concerned about how much coding they are expected to do
on their own. One benefit of spending this amount of time on
programming, even in a neuroscience course, is that it can
allow students to directly interact with real neuroscience
data to pose their own research questions and connect real-
world data to course material. For example, in Juavinett et
al. (2020), students are invited to compare two different cell
types of their choosing. This kind of activity could be tailored
for different lesson plans – for example, a discussion of
comparative neuroscience (looking at human versus mouse
cells) or an exploration of different inhibitory cell types.

Discipline-Based Coding Classes
Finally, instructors can develop full courses that are
contextualized in neuroscience or biology. Such discipline-
based introductory programming classes are particularly
effective for students who are ineligible for computer science
courses at their institutions, anxious about coding, or late to
realize its utility in biological research. Inspired by other
successful models of such courses (Dodds et al., 2012), I
teach an introduction to Python course for biology students
at my institution. Importantly, courses such as these are
particularly effective at recruiting women and students of
color (Dodds et al., 2021; Zuckerman and Juavinett, 2024).
 Relatedly, many institutions are now developing
introductory data science classes, which teach
programming and statistics with broad applicability
(Donoghue et al., 2021, 2022; Çetinkaya-Rundel and
Ellison, 2021). These are powerful courses for neuroscience
students to develop intuitions around data and foundational
programming skills and can be more accessible (both
conceptually and logistically) than introductory computer
science courses.
 There are also endless opportunities to develop and
teach more advanced computational classes in
neuroscience, for example with a focus on data science or
computational modeling. In fact, these classes are arguably
more common than introductory discipline-specific classes.
Usefully, the availability of online coding environments, as
noted above, has led to a proliferation in free online coding
textbooks and even full courses in advanced neuroscience
topics (van Viegen et al., 2021; see Examples in Table 1).
Instructors and departments should think carefully about
prerequisites for such courses and ensure that if
programming is not a prerequisite, ample time is spent
bringing all students up to speed. The alternative — where
instructors assume the programming skills of their students
— is exceptionally damaging to students who feel like they
do not have an entry point into these skillsets.

LOOKING FORWARD
As I write this, computational education is changing under
our feet. These changes are largely driven by technological
advances in our ability to live with and learn from large
language models.

Considerations in the Age of Generative AI
Like all fields of education, computational education is also
changing in the wake of generative AI tools (e.g., chatGPT,

Google Bard) as well as more established AI assistants such
as GitHub Copilot, which offers predictive suggestions for
code and is free to both educators and students. Innovators
in computer science education are now integrating
advanced artificial intelligence (AI) assistants such as
Copilot to teach students how to work alongside them (see
Porter and Zingaro, 2023).
 These are particularly interesting developments
especially when it comes to computational skill building in
the context of neuroscience or biology, where computing is
a tool rather than a focus of study. In practice, many
neuroscience researchers and industry professionals will
turn to generative AI tools for support with coding as well as
many other tasks (Guo, 2023). Instructors should also
consider using generative AI to support their own learning
— personally, I have found it incredibly useful. Specifically,
I use chatGPT for suggestions when writing my own code,
to help generate problem sets, and to test whether a prompt
for a programming assessment is interpretable in the way I
expect. These days, if I have a programming question, I am
more likely to turn to chatGPT than to a generic Google
search. Thus, it would not make sense for us to teach our
neuroscience students to avoid such tools entirely when
they are learning how to code.
 For the purposes of exposing our students to coding and
encouraging them to give it a try, generative AI can lower
barriers to entry — students may be more willing to ask
chatGPT than an instructor. Further, generative AI tools can
provide very helpful explanations of code. We should
therefore encourage our students to include generative AI
as an additional learning resource.
 That said, we should also advise our students on how to
effectively prompt generative AI and assess its output. If
students simply enter a dataset and say, “analyze this data,”
a generative AI may interpret that in any number of ways.
Relatedly, a user could give a very detailed and considered
prompt, but the code may still misinterpret the structure of
the data. It is essential that we teach students to be critical
of AI-written code and resulting processed outputs, for
example, by asking questions such as, “What is the new
mean, minimum, and maximum of the processed data?
Does that make sense?” These concerns become especially
important in the context of full-blown discipline-based coding
classes, where instructors should be very clear about how
students can use such tools. Finally, and importantly,
students should be advised that such tools are built on the
collective, open information on the internet, which has
inherent, deep-seated biases as well as copyright concerns
(Reynolds, 2023).

Concluding Thoughts
It is not essential that every neuroscience student learn how
to code. There are many vibrant and productive areas of
research that do not rely on programming but instead are
powered by longstanding, fundamental approaches in
biology research. That said, given the equity considerations
and the increasing role of computing in research and in the
broader economy, it may be strategic for neuroscience
instructors to at least expose their students to these skill
sets.

The Journal of Undergraduate Neuroscience Education (JUNE), Winter 2024, 22(2):A99-A103 A103

REFERENCES
Akil H, Balice-Gordon R, Cardozo DLL, Koroshetz W, Posey Norris SMM,

Sherer T, Sherman SM, Thiels E (2016) Neuroscience Training for the
21st Century. Neuron 90:917–926. doi: 10.1016/j.neuron.2016.05.030

Bähring R, Bauer CK (2014) Easy method to examine single nerve fiber
excitability and conduction parameters using intact nonanesthetized
earthworms. Advances in Physiology Education 38:253–264. doi:
10.1152/advan.00137.2013

Casimo K (2023) Teaching and Training with Open Science: From
Classroom Teaching Tool to Professional Development. Neuroscience
525:6–12. doi: 10.1016/j.neuroscience.2023.07.013

Çetinkaya-Rundel M, Ellison V (2021) A Fresh Look at Introductory Data
Science. Journal of Statistics and Data Science Education 29:S16–S26.
doi: 10.1080/10691898.2020.1804497

Cheryan S, Master A, Meltzoff AN (2015) Cultural stereotypes as
gatekeepers: increasing girls’ interest in computer science and
engineering by diversifying stereotypes. Frontiers in Psychology 6:1–8.
doi: 10.3389/fpsyg.2015.00049

Cheryan S, Plaut VC, Davies PG, Steele CM (2009) Ambient Belonging:
How Stereotypical Cues Impact Gender Participation in Computer
Science. Journal of Personality and Social Psychology 97:1045–1060.
doi: 10.1037/a0016239

Dodds Z, Libeskind-Hadas R, Bush E (2012) Bio1 as CS1: evaluating a
crossdisciplinary CS context. In: Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science
education, pp 268–272. New York, NY: Association for Computing
Machinery. doi: 10.1145/2325296.2325360

Dodds Z, Morgan M, Popowski L, Coxe H, Coxe C, Zhou K, Bush E,
Libeskind-Hadas R (2021) A Biology-based CS1: Results and
Reflections, Ten Years in. In: SIGCSE 2021 - Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education, pp 796–
801. New York, NY: Association for Computing Machinery. doi:
10.1145/3408877.3432469

Donoghue T, Voytek B, Ellis S (2022) Course Materials for Data Science in
Practice. Journal of Open Source Education 5:121. doi:
10.21105/jose.00121

Donoghue T, Voytek B, Ellis SE (2021) Teaching Creative and Practical
Data Science at Scale. Journal of Statistics and Data Science Education
29:S27–S39. doi: 10.1080/10691898.2020.1860725

Grisham W, Abrams M, Babiec WE, Fairhall AL, Kass RE, Wallisch P, Olivo
R (2021) Teaching Computation in Neuroscience: Notes on the 2019
Society for Neuroscience Professional Development Workshop on
Teaching. J Undergrad Neurosci Educ 19:A185–A191.

Grisham W, Brumberg JC, Gilbert T, Lanyon L, Williams R, Olivo R (2017)
Teaching with Big Data: Report from the 2016 Society for Neuroscience
Teaching Workshop. J Undergrad Neurosci Educ 16:68–76.

Grisham W, Lom B, Lanyon L, L. Ramos R (2016) Proposed Training to
Meet Challenges of Large-Scale Data in Neuroscience. Frontiers in
Neuroinformatics 10:1–6. doi: 10.3389/fninf.2016.00028

Guo P (2023) Six Opportunities for Scientists and Engineers to Learn
Programming Using AI Tools such as ChatGPT. Computing in Science
and Engineering 25:73–78. doi: 10.1109/MCSE.2023.3308476

Ho Y-Y, Roeser A, Law G, Johnson BR (2021) Pandemic Teaching: Using
the Allen Cell Types Database for Final Semester Projects in an
Undergraduate Neurophysiology Lab Course. J Undergrad Neurosci
Educ 20:A100–A110.

Juavinett A (2020) Learning How to Code While Analyzing an Open Access
Electrophysiology Dataset. J Undergrad Neurosci Educ 19(1):A94-A104.

Juavinett AL (2022) The next generation of neuroscientists needs to learn
how to code, and we need new ways to teach them. Neuron 110:576–

578. doi: 10.1016/j.neuron.2021.12.001
Kladt N, Hanslik U, Heinzel H-G (2010) Teaching Basic Neurophysiology

Using Intact Earthworms. J Undergrad Neurosci Educ 9:A20–A35.
Lewis CM, Anderson RE, Yasuhara K (2016) “I Don’t Code All Day”: Fitting

in computer science when the stereotypes don’t fit. In: ICER 2016 -
Proceedings of the 2016 ACM Conference on International Computing
Education Research, pp 23–32. New York, NY: Association for
Computing Machinery. doi: 10.1145/2960310.2960332

Madlung A (2018) Assessing an effective undergraduate module teaching
applied bioinformatics to biology students. PLOS Computational Biology
14:e1005872. doi: 10.1371/journal.pcbi.1005872

Margolis J, Fisher A (2003) Unlocking the Clubhouse. Cambridge, MA: The
MIT Press.

Muller E, Bednar JA, Diesmann M, Gewaltig M-O, Hines M, Davison AP
(2015) Python in neuroscience. Frontiers in Neuroinformatics 9:11. doi:
10.3389/fninf.2015.00011

Paninski L, Cunningham JP (2018) Neural data science: accelerating the
experiment-analysis-theory cycle in large-scale neuroscience. Current
Opinion in Neurobiology 50:232–241. doi: 10.1016/j.conb.2018.04.007

Porter L, Zingaro D (2023) Learn AI-assisted Python Programming. Shelter
Island, NY: Manning Publishing.

Reynolds E (2023) Of Chatbots and Colonizers. J Undergrad Neurosci
Educ 21(2): E8-E9. doi: 10.59390/YLHJ6332

Schlafly E, Cheung A, Michalka S, Lipton P, Moore-Kochlacs C, Bohland J,
Eden U, Kramer M (2020) Python for the practicing neuroscientist: an
online educational resource. eLife Available at:
https://elifesciences.org/labs/f779833b/python-for-the-practicing-
neuroscientist-an-online-educational-resource.

Sejnowski TJ, Churchland PS, Movshon JA (2014) Putting big data to good
use in neuroscience. Nature Neuroscience 17:1440–1441. doi:
10.1038/nn.3839

van Viegen T et al. (2021) Neuromatch Academy: Teaching Computational
Neuroscience with Global Accessibility. Trends in Cognitive Sciences
25:535–538. doi: 10.1016/j.tics.2021.03.018

Zuckerman AL, Juavinett AL (2024) When Coding Meets Biology: The
tension between access and authenticity in a contextualized coding
class. In: Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2024), March 20–23, 2024,
Portland, OR, USA. New York, NY: Association for Computing
Machinery. doi: 10.1145/3626252.3630966

Received October 10, 2023; revised February 8, 2024; accepted February
10, 2024.

ACKNOWLEDGEMENTS
The author would like to thank her colleague Dr. Marc Marino for helping to
develop some of the coding exercises referenced here (particularly the
strength-duration curve notebook), as well as the attendees at the
“Integrating Programming into Neuroscience Courses” workshop at the
2023 Faculty for Undergraduate Neuroscience Conference, for which these
ideas were originally compiled.

Address correspondence to: Dr. Ashley Juavinett, Neurobiology
Department, UC San Diego, La Jolla, CA 92037. Email:
ajuavine@ucsd.edu

Copyright © 2024 Faculty for Undergraduate Neuroscience

www.funjournal.org

