
The Journal of Undergraduate Neuroscience Education (JUNE), Winter 2024, 22(2):A99-A103 
 

 

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org 

ARTICLE 
Integrating Programming into Neuroscience Courses 
 
Ashley L. Juavinett 
Neurobiology Department, University of California, San Diego, La Jolla, CA 92037. 
https://doi.org/10.59390/PYYP5010 

Programming is a useful skill for students, both in 
neuroscience research and in the broader economy. Many 
instructors, however, may wonder how and when they 
should integrate it into their coursework, especially if they 
themselves have limited computational training. The 
suggestions offered here aim to help a wide range of 
educators — even those who have minimal coding 
experience — who wish to expose their students to the 
intersection of neuroscience and programming. Throughout, 
I provide examples of how I have weaved coding into various 
elements of neuroscience courses, even those without a 

computational focus. I also discuss the rich landscape of 
low-cost, accessible programming tools as well as how 
generative AI can (and should) impact the way that we are 
teaching programming. Ultimately, the goal is not to insist 
that all our students learn how to code, but rather to lower 
barriers and provide exposure and opportunity to any 
student who wishes to integrate programming into their 
research or careers. 
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Like most STEM fields as well as the broader economy, 
neuroscience research is increasingly reliant on 
programming. Datasets are larger and more complex, 
computational models contain multitudes, and open science 
is making it possible for anyone to dig in (Sejnowski et al., 
2014; Paninski and Cunningham, 2018). As myself and 
others have argued over the years, these changes are 
necessitating changes in both undergraduate and graduate 
education (Akil et al., 2016; Grisham et al., 2016, 2017; 
Juavinett, 2022). To work in these rapidly expanding 
intersections, students need strong quantitative 
foundations, such as statistics and data science, alongside 
practical skills such as programming. In this article, I focus 
on the latter, exploring three different ways that educators 
can integrate programming into their neuroscience curricula. 
     Despite the clear importance of offering exposure to 
coding, there are a variety of barriers, from limited course 
offerings to instructor knowledge of coding (Juavinett, 2022; 
Casimo, 2023). In addition, there are attitudinal barriers, 
especially from students who have been historically (and 
continue to be) excluded from coding (Margolis and Fisher, 
2003; Cheryan et al., 2009, 2015; Lewis et al., 2016). To 
ensure that neither instructors nor their students are left 
behind, we need to consider each of these challenges as we 
build innovative programming curricula. The hope here is to 
provide a starting guide for instructors who wish to integrate 
programming into their courses but are not sure where to 
start.  
 
TOOLS FOR INTEGRATING PROGRAMMING 
While pervasive stereotypes about who codes as well as 
access to computing courses continue to interfere with 
inclusion, other more logistical barriers have been 
significantly reduced in recent years. Specifically, there are 
many different platforms on which students and educators 
can learn how to code, and these environments support a 
variety of languages. Thus, educators have two choices 
when getting started: programming language and platform. 

Choice of Programming Language 
Programming languages differ in their syntax (the rules of 
the language), speed, and usage. While there is not one 
best programming language to learn for neuroscientists, 
there are important considerations: ease of readability, cost 
and accessibility, and use within our discipline. There are 
lower-level, more difficult to read languages (such as Java) 
and languages which are higher-level and easier to read 
(such as Python, R, and MATLAB). For programming 
beginners who are budding neuroscience researchers, 
these higher-level languages are generally a better choice. 
Second, some computing platforms (e.g., MATLAB) are 
expensive and therefore cost prohibitive for institutions or 
students without licenses. On the other hand, languages 
such as Python and R are open source and free for students 
to use. 
     An additional consideration is the prevalence of a 
language in neuroscience research. While this is a tough 
feature to assess quantitively, MATLAB and Python are both 
commonly used for data analysis, visualization, and 
computational modeling, while R is often used for statistics 
as well as bioinformatics (Muller et al., 2015; Schlafly et al., 
2020; Grisham et al., 2021). Relatedly, we can consider the 
utility of a language in the broader workforce — another 
tough aspect to assess and constantly changing — 
however, Python and R are both defensible choices when it 
comes to data science or related fields. 
     A final and important consideration in this context is an 
instructor’s experience with a given language. It is a very big 
ask for someone to switch languages entirely for the 
purposes of teaching, especially without time or incentives. 
It is therefore understandable for an instructor to choose the 
language they know best. Instructors seeking to improve 
their own programming knowledge are strongly encouraged 
to seek out training such as that offered through The 
Carpentries (https://carpentries.org/), which also offers 
instructor training, or other online resources (e.g., 
DataCamp). 
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     Considering each of these factors, I predominantly teach 
Python in my classes while many of my colleagues in biology 
focus on R. That said, I will not begrudge any instructor for 
choosing the language that is most comfortable for them — 
in reality, any coding language is a great place to start. In 
my opinion, the most important consideration is that 
instructors do not engender fear about programming, but 
rather empower their students to learn, to make mistakes, 
and to ask questions, so that they too can build self-efficacy 
in programming. 
 
Choice of Programming Environment 
Educators also need to decide on the best programming 
environment for their students. Programming can be taught 
using offline or online tools. Traditional computing education 
teaches line-by-line coding in the terminal or by running 
short scripts, while more modern computing education takes 
advantage of free online tools or user-friendly integrated 
development environments (IDEs). These IDEs (e.g., 
MATLAB, R Studio, or VS Code), usefully contain a 
command prompt, an area to write scripts, and windows to 
show outputs or the contents of current variables.  
     In the past decade, there has also been a proliferation of 
free online platforms (essentially lightweight IDEs) which 
have made it possible for anyone with an internet connection 
to try programming. For example, free cloud computing tools 
such as Google Colab (http://colab.research.google.com) 
and Binder (http://mybinder.org) have made it such that 
students and departments do not need to download hefty 
 

software onto their computers. Google Colab and Binder 
allow students to both review explanatory markdown text 
and interact with live code which can be pre-written. In this 
article, I refer to such cloud computing notebooks, 
regardless of where they are hosted, as simply “coding 
notebooks.” Even MATLAB has developed an online 
computing environment, a clever workaround for what is 
otherwise a large program to install. Further easing logistical 
barriers, such online platforms run in a browser and 
therefore work on tablets as well as laptops.  
     Inspired by other instructors at my institution, I primarily 
teach programming in coding notebooks, which have 
partially written code that is completed with live coding in 
class. These notebooks are hosted on GitHub 
(www.github.com), a common place for professionals to 
post their code, and run on our institution’s JupyterHub or 
run via Google Colab.      
 
THREE INTEGRATION STRATEGIES 
With this motivation in mind and using widely available tools, 
here I offer three possible ways of integrating programming 
into neuroscience curricula, with concrete examples (Table 
1). Each of these strategies are designed for students with 
limited or no programming backgrounds, though some 
statistical understanding will be useful for programming for 
data analysis. These approaches can be implemented using 
free computing platforms such as Google Colab, which are 
especially useful without institutional support for a locally 
hosted JupyterHub (or similar computational platform). 
    

 Exposure to coding in 
coursework 

Integration of coding in coursework  Discipline-based coding classes  

Learning 
Outcomes 

 
Students 

will be 
able to: 

 Recognize use cases 
for programming in 
neuroscience 

 Edit provided code 
examples, often to 
generate figures or 
analyze data 

Previous column, plus: 
 Write additional code based on 

provided examples 
 Edit code to address a research 

question 

Previous column, plus: 
 Design coding workflows to address a data 

analysis challenge 
and/or 
 Write code to illustrate a computational 

model 

Time 
required 

< 1 hour > 1 hour  One semester/ quarter 

Instructor 
comfort 
with 
coding 

Novice: Instructors can 
troubleshoot basics of 
coding notebooks and 

simple examples 

Novice: Instructors can troubleshoot more 
complex code examples 

Expert: Instructors can explain mechanics of 
code, troubleshoot complex code, write 

additional examples and problem sets for 
students, and write code to analyze 

neuroscience data 

Examples 
 Implementation in a 

laboratory course: 
https://bipn145.github.io/ 

 Analysis of Allen Institute cell types 
data: Juavinett, 2020; 
http://github.com/ajuavinett/ 
CellTypesLesson/ and Ho et al., 2021 

 Bioinformatics module: Madlung, 2018  

 Introductory computing for biologists: 
http://www.github.com/BILD62 or 
Libeskind-Hadas and Bush, Computing for 
Biologists (see also Dodds et al., 2012) 

 “Case studies in Python”: https://mark-
kramer.github.io/Case-Studies-Python 

 Advanced coursework: Neuromatch 
Academy https://compneuro.neuromatch.io 

 
Table 1. Three different strategies to integrate programming into neuroscience courses, along with their learning objectives, time required, 
the recommended level of instructor coding background, and resources with examples. 
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Figure 1. Examples of output from a curve-fitting notebook. Left: Screenshot of the prompt to input data. Right: Real student data and the 
figure, with fitted hyperbolic curve, that is initially generated. Students are required to input their own axes labels onto the figure. 
 
 
Exposure to Coding in Coursework 
Many neuroscience instructors do not have the time in their 
courses nor the training themselves to lead in-depth 
programming exercises. There are, however, several 
lightweight ways to integrate coding in such a way that 
students are at least exposed to the intersection of 
programming of neuroscience and related fields. 
     First, instructors can pull back the curtain on how 
particular data analyses are done, the workflows in their own 
lab, or their own experience with coding. For example, a 
common example in neuroscience might be showing tuning 
curves and illustrating how they are computed. While these 
tuning curves were done by hand for many decades, now 
they are generated using custom-written software programs. 
Even explicitly making this point to students can be a way to 
illustrate how the “everyday neuroscientist” is using 
programming tools – a point that may be lost on students. 
Similarly, when introducing techniques like 
electroencephalography (EEG) or functional magnetic 
resonance imaging (fMRI), instructors may highlight that 
researchers use large, custom toolboxes written in various 
programming languages to analyze these kinds of data. 
    Instructors may also choose to take this one step further 
by inviting students to analyze their own data using 
programming notebooks. This is most appropriate in a 
laboratory course but could also be a very short example in 
other contexts. For example, instructors that are teaching 
about reaction times or simple psychophysics could spend 
20 minutes in class asking students to assess their own 
auditory and visual reaction times and input these into a 
class dataset and ultimately a coding notebook for data 
visualization and hypothesis testing. Relatedly, coding 
notebooks can be great sandboxes to introduce statistical 
concepts such as the central limit theorem. 
     In a laboratory course, instructors can provide pre-written 
notebooks that students use to input their data, generate 
visualizations, and run statistics. In a Neurobiology 
Laboratory that I teach, we collect data from the medial giant 
fiber of the earthworm, a common model for teaching 
extracellular electrophysiology and fundamental properties 
of neurons, especially cable theory (Kladt et al., 2010; 
Bähring and Bauer, 2014). In this experiment, students are 

tasked with generating a strength-duration curve, which 
illustrates that nerves require longer stimulus durations 
when less current is administered. Students also use these 
data to estimate a rheobase and chronaxie. The strength-
duration curve follows a hyperbolic function, which can be 
used to derive the rheobase and chronaxie directly (Bähring 
and Bauer, 2014).  
     Microsoft Excel, however, does not offer a hyperbolic 
curve in their curve fitting toolbox. Therefore, we have 
generated a notebook where students input their data and 
fit this curve (Figure 1; a complete notebook can be found at 
https://bipn145.github.io/Python/FitCurve.html). This curve 
fitting notebook also illustrates the curve with ideal, 
hypothetical data, helping students build an intuition for 
curve fitting more broadly. In our implementation, students 
only modify two parts of the code: a list containing their own 
data and the axes labels. Even with this small example they 
can identify the limitations of Excel and the utility of using 
programming to analyze their data. 
     If there are enough use cases for such notebooks, 
instructors can even build a full, online book with different 
pages for different exercises. An example of such a book, 
built using JupyterBook (https://jupyterbook.org/), can be 
found at http://bipn145.github.io. Instructors can use the 
source code for this book to build their own. 
 
Integration of Coding into Coursework 
Alternatively, instructors may feel empowered to integrate 
programming directly into their coursework, even expecting 
students to write their own code from scratch. Instructors 
could spend one or more course or laboratory sessions 
dedicated to introducing students to fundamental coding 
concepts, such as creating variables or generating plots. 
The goal here is not to teach students everything they need 
to know about programming, but rather to illustrate its use 
and empower students to learn more through carefully 
chosen examples. 
     An example of such a strategy has been illustrated in a 
number of publications, for example in using open datasets 
to teach coding alongside neurobiology concepts or to teach 
bioinformatics (Juavinett, 2020; Ho et al., 2021; Madlung, 
2018). In each of these, instructors should define the coding-
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specific learning objectives for students, who may be 
concerned about how much coding they are expected to do 
on their own. One benefit of spending this amount of time on 
programming, even in a neuroscience course, is that it can 
allow students to directly interact with real neuroscience 
data to pose their own research questions and connect real-
world data to course material. For example, in Juavinett et 
al. (2020), students are invited to compare two different cell 
types of their choosing. This kind of activity could be tailored 
for different lesson plans – for example, a discussion of 
comparative neuroscience (looking at human versus mouse 
cells) or an exploration of different inhibitory cell types. 
 
Discipline-Based Coding Classes 
Finally, instructors can develop full courses that are 
contextualized in neuroscience or biology. Such discipline-
based introductory programming classes are particularly 
effective for students who are ineligible for computer science 
courses at their institutions, anxious about coding, or late to 
realize its utility in biological research. Inspired by other 
successful models of such courses (Dodds et al., 2012), I 
teach an introduction to Python course for biology students 
at my institution. Importantly, courses such as these are 
particularly effective at recruiting women and students of 
color (Dodds et al., 2021; Zuckerman and Juavinett, 2024).  
     Relatedly, many institutions are now developing 
introductory data science classes, which teach 
programming and statistics with broad applicability 
(Donoghue et al., 2021, 2022; Çetinkaya-Rundel and 
Ellison, 2021). These are powerful courses for neuroscience 
students to develop intuitions around data and foundational 
programming skills and can be more accessible (both 
conceptually and logistically) than introductory computer 
science courses. 
     There are also endless opportunities to develop and 
teach more advanced computational classes in 
neuroscience, for example with a focus on data science or 
computational modeling. In fact, these classes are arguably 
more common than introductory discipline-specific classes. 
Usefully, the availability of online coding environments, as 
noted above, has led to a proliferation in free online coding 
textbooks and even full courses in advanced neuroscience 
topics (van Viegen et al., 2021; see Examples in Table 1). 
Instructors and departments should think carefully about 
prerequisites for such courses and ensure that if 
programming is not a prerequisite, ample time is spent 
bringing all students up to speed. The alternative — where 
instructors assume the programming skills of their students 
— is exceptionally damaging to students who feel like they 
do not have an entry point into these skillsets. 
 
LOOKING FORWARD 
As I write this, computational education is changing under 
our feet. These changes are largely driven by technological 
advances in our ability to live with and learn from large 
language models. 
 
Considerations in the Age of Generative AI 
Like all fields of education, computational education is also 
changing in the wake of generative AI tools (e.g., chatGPT, 

Google Bard) as well as more established AI assistants such 
as GitHub Copilot, which offers predictive suggestions for 
code and is free to both educators and students. Innovators 
in computer science education are now integrating 
advanced artificial intelligence (AI) assistants such as 
Copilot to teach students how to work alongside them (see 
Porter and Zingaro, 2023). 
     These are particularly interesting developments 
especially when it comes to computational skill building in 
the context of neuroscience or biology, where computing is 
a tool rather than a focus of study. In practice, many 
neuroscience researchers and industry professionals will 
turn to generative AI tools for support with coding as well as 
many other tasks (Guo, 2023). Instructors should also 
consider using generative AI to support their own learning 
— personally, I have found it incredibly useful. Specifically, 
I use chatGPT for suggestions when writing my own code, 
to help generate problem sets, and to test whether a prompt 
for a programming assessment is interpretable in the way I 
expect. These days, if I have a programming question, I am 
more likely to turn to chatGPT than to a generic Google 
search. Thus, it would not make sense for us to teach our 
neuroscience students to avoid such tools entirely when 
they are learning how to code. 
     For the purposes of exposing our students to coding and 
encouraging them to give it a try, generative AI can lower 
barriers to entry — students may be more willing to ask 
chatGPT than an instructor. Further, generative AI tools can 
provide very helpful explanations of code. We should 
therefore encourage our students to include generative AI 
as an additional learning resource. 
     That said, we should also advise our students on how to 
effectively prompt generative AI and assess its output. If 
students simply enter a dataset and say, “analyze this data,” 
a generative AI may interpret that in any number of ways. 
Relatedly, a user could give a very detailed and considered 
prompt, but the code may still misinterpret the structure of 
the data. It is essential that we teach students to be critical 
of AI-written code and resulting processed outputs, for 
example, by asking questions such as, “What is the new 
mean, minimum, and maximum of the processed data? 
Does that make sense?” These concerns become especially 
important in the context of full-blown discipline-based coding 
classes, where instructors should be very clear about how 
students can use such tools. Finally, and importantly, 
students should be advised that such tools are built on the 
collective, open information on the internet, which has 
inherent, deep-seated biases as well as copyright concerns 
(Reynolds, 2023). 
 
Concluding Thoughts 
It is not essential that every neuroscience student learn how 
to code. There are many vibrant and productive areas of 
research that do not rely on programming but instead are 
powered by longstanding, fundamental approaches in 
biology research. That said, given the equity considerations 
and the increasing role of computing in research and in the 
broader economy, it may be strategic for neuroscience 
instructors to at least expose their students to these skill 
sets.  
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