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Functional magnetic resonance imaging (fMRI) has been a 
cornerstone of cognitive neuroscience since its invention in 
the 1990s. The methods that we use for fMRI data analysis 
allow us to test different theories of the brain, thus different 
analyses can lead us to different conclusions about how the 
brain produces cognition. There has been a centuries-long 
debate about the nature of neural processing, with some 
theories arguing for functional specialization or localization 
(e.g., face and scene processing) while other theories 
suggest that cognition is implemented in distributed 
representations across many neurons and brain regions. 
Importantly, these theories have received support via 
different types of analyses; therefore, having students 
implement hands-on data analysis to explore the results of 
different fMRI analyses can allow them to take a firsthand 
approach to thinking about highly influential theories in 
cognitive neuroscience. Moreover, these explorations allow 
students to see that there are not clearcut “right” or “wrong” 

answers in cognitive neuroscience, rather we effectively 
instantiate assumptions within our analytical approaches 
that can lead us to different conclusions. Here, I provide 
Python code that uses freely available software and data to 
teach students how to analyze fMRI data using traditional 
activation analysis and machine-learning-based multivariate 
pattern analysis (MVPA). Altogether, these resources help 
teach students about the paramount importance of 
methodology in shaping our theories of the brain, and I 
believe they will be helpful for introductory undergraduate 
courses, graduate-level courses, and as a first analysis for 
people working in labs that use fMRI. 
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The advent of noninvasive brain recording techniques 
revolutionized the study of the human brain. For example, 
noninvasive methods allow researchers to study large 
samples of participants as they dynamically engage in 
behavioral tasks, which stands in contrast to the relatively 
static methods of studying patients with damage to their 
brains, which was the approach in classical cognitive 
neuropsychology. Initially, many of the early papers using 
methods such as positron emission tomography (PET) and 
functional magnetic resonance imaging (fMRI) sought to 
bolster the findings from patients with localized brain 
damage. For example, researchers aimed to ascertain 
whether the specific behavioral changes that were observed 
in patients with localized lesions were similarly localized in 
neuroimaging approaches (e.g., language and Broca’s area 
[left inferior frontal gyrus]) or whether a more distributed 
network of regions played a role. Interestingly, even early 
studies that used methods that would become the precursor 
to PET imaging revealed that a broader network of regions 
seemed to play a role in cognitive functions, such as 
language (e.g., the right hemisphere and regions outside of 
the regions defined by neuropsychology: Ingvar and 
Schwartz, 1974). Furthermore, early studies also revealed 
that localized brain damage could give rise to broader 
network-level changes in the brain, thus suggesting that 
lesions cause widespread network changes rather than 
solely affecting the lesioned location (e.g., Cronqvist et al., 
1965; for more recent and similar findings with fMRI see: 

Gratton et al., 2012; Henson et al., 2016; for recent 
computational modeling to support these empirical findings 
see: Alstott et al., 2009). On the other hand, convincing 
evidence emerged that certain classes of stimuli tended to 
activate specific brain regions (e.g., faces: Kanwisher et al., 
1997; e.g., scenes: Epstein and Kanwisher, 1998). 
Therefore, a decades-long debate has emerged with one set 
of prominent theories suggesting that the brain contains 
functionally specialized modules (Fodor, 1983; Epstein, 
2005; Reddy and Kanwisher, 2006; Kanwisher, 2010, 2017) 
while an alternative set of prominent theories suggests that 
the brain uses distributed representations in which groups of 
neurons and brain regions work together in the service of 
cognition (e.g., distributed representations: McClelland, 
1986; Rumelhart et al., 1986; Rumelhart and Todd, 1993; 
McClelland and Rogers, 2003; Haxby et al., 2001; Haxby, 
2012; e.g., the brain-as-a-network theory: Sporns, 2010; 
Bullmore and Bassett, 2011). If students implement hands-
on data analysis to see the contradictory results between 
these frameworks on the same fMRI data, it will allow them 
to see that our methods are effectively an instantiation of our 
assumptions of how the brain works, thus clearly 
demonstrating that “what we observe is not nature itself, but 
nature exposed to our method of questioning” (Heisenberg, 
2007). Moreover, such inquiry-based learning may increase 
student engagement, retention, and learning, as in other 
areas of science (Lopatto, 2007; Russell et al., 2007; 
Rodenbusch et al., 2016; Brabec et al., 2018).    
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 Figure 1. Classic approaches to neuroscience include various methods of attempting to find evidence of localization of function via double 
dissociation. In human studies these approaches have included neuropsychology and activation analysis, thus these methods can be 
seen as two sides of the same coin. The classic method of neuropsychology attempts to find specific behavioral changes following 
localized brain damage (i.e., the arrow goes from the brain to behavior; note that these methods are common throughout neuroscience, 
e.g., lesion and optogenetic approaches in nonhuman animals). The classic neuroimaging method of activation analysis attempts to find 
differences in the brain regions that are activated by different behavioral tasks (i.e., the arrow goes from behavior to the brain; note that 
these methods are common throughout neuroscience, e.g., looking for increases in neural activity within specific brain regions using 
single unit electrophysiology in nonhuman animals). 
 
 
Searching for Evidence of functional specialization 
Studies in the late 1990s tested the theory of functional 
specialization for high-level object categories using 
activation analysis. Using this approach, which is 
essentially an extension of classical neuropsychology, 
researchers aimed to determine if specific regions of the 
brain were more active in response to one category or 
stimulus feature than others (Figure 1). When it is applied to 
fMRI data, activation analysis typically assesses whether 
the amount of blood-oxygenation-level dependent (BOLD) 
activity is greater for one task condition than another, and 
these techniques typically employ assumptions of spatial 
clustering by looking for clusters of voxels in nearby brain 
regions. These techniques are typically referred to as mass 
univariate approaches (see Chapter 5 of Poldrack et al., 
2011) because researchers employ a univariate analysis 
(e.g., t-test, ANOVA) on all of the voxels within a predefined 
region of interest (e.g., the whole brain or a subset of brain 
areas of interest). 
     As one example of this approach, the discovery of the 
Fusiform Face Area (FFA; Kanwisher et al., 1997; McCarthy 
et al., 1997) and the Parahippocampal Place Area (PPA; 
Epstein and Kanwisher, 1998) provided strong evidence to 
support the notion that the brain contains functionally 
specialized regions for processing high-level visual 
information (i.e., these studies suggest that different brain 
regions process different categories of visual stimuli). 
Moreover, the findings from these studies dovetailed nicely 
with studies of patients with localized damage to their brain. 
For example, patients with prosopagnosia have sometimes 
been shown to have a relatively selective impairment in their 
ability to recognize faces with a relatively intact ability to 
recognize other object categories (e.g., a patient with 

prosopagnosia that could name the make and model of 
several of a collection of toy cars: Sergent and Signoret, 
1992; but note that other accounts have shown a more 
domain general deficit in face and object recognition: Barton 
and Corrow, 2016; Geskin and Behrmann, 2018). Therefore, 
taken together, one set of prominent theories (Fodor, 1983; 
Epstein, 2005; Reddy and Kanwisher, 2006; Kanwisher, 
2010, 2017) argue that the human brain contains 
specialized regions for processing specific high-level 
categories and these theories continue to be advanced 
based on the results of activation analysis. 
 
Searching for Evidence of Distributed Representations 
In the late 1990s and early 2000s, fMRI researchers began 
to test an alternative theory of neural processing: the theory 
of distributed representations. These studies grew out of 
a rich literature in cognitive science, including neural 
network modeling in which researchers theorized that neural 
information is contained within coarse-coded distributed 
representations (e.g., McClelland, 1986; Rumelhart et al., 
1986; Rumelhart and Todd, 1993). Specifically, rather than 
having specialized regions that process certain categories 
of stimuli, neurons can be coarsely tuned to represent 
various stimulus features and the brain or organism can 
make sense of the neural information by assessing the 
similarity of the patterns of activity between different classes 
of stimuli or events. For example, in a distributed 
representation, the pattern of activity in response to two 
images of scenes should be more similar than between a 
scene and a face (Figure 2), however the units (e.g., 
neurons or in the case of fMRI, voxels [short for volume 
element], the smallest unit of fMRI data) need not be 
clustered together (e.g., they can be spatially distributed)  
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Figure 2. Multivariate pattern analysis (MVPA) enables 
researchers to test the theory of distributed representations that 
posits that, rather than being comprised of specialized modules, 
units (e.g., neurons, voxels) can be coarsely tuned to carry 
information about several categories. MVPA has been used 
extensively in neuroscience lately (e.g., for fMRI and EEG analysis 
in cognitive neuroscience and “ensemble analysis” in multi-unit 
electrophysiology in nonhuman animals: Eichenbaum and Davis, 
1998). The example here depicts that stimuli within a category 
would elicit a similar pattern of activity across units but relatively 
distinct patterns of activity in response to stimuli in different 
categories. Note about abbreviation: u=unit (e.g., neuron, voxel). 
 
nor solely tuned for a specific stimulus feature (e.g., units 
can respond to different categories). 
     To test the theory of distributed representations, 
researchers employed multivariate pattern analysis (MVPA), 
which allowed them to study patterns of activity across units 
(voxels for fMRI) rather than looking for localized changes in 
activity (Edelman et al., 1998; Haxby et al., 2001). Results 
of these experiments provided evidence that high-level 
visual cognition is supported by distributed representations 
through two observations. First, much of the ventral visual 
stream showed changes in activation (e.g., increases or 
decreases in BOLD activity) in response to various image 
categories (Haxby et al., 2001). Second, when Haxby et al. 
(2001) applied MVPA to the regions that responded 
maximally to one category (e.g., the putative FFA or PPA), 
they found that patterns of activity in these voxels could be 
used to distinguish between the other categories of images, 
thus suggesting that these regions are not specialized to 
exclusively carry information about the category of stimulus 
to which they respond maximally. Similarly, when Haxby et 
al. (2001) excluded the voxels that responded maximally to 
any given category, their overall results were the same, thus 
suggesting their results were not driven by localized regions 
that preferentially represent a single category. Therefore, 
these results provided early evidence that high-level 
categories are coded in distributed representations across 
the ventral temporal cortex. Altogether, MVPA provided a 
principled method for testing the theory of distributed 
representations (McClelland, 1986; Rumelhart et al., 1986; 
Haxby et al., 2001; Haxby, 2012; Rissman and Wagner, 
2012). 
 
The Importance of Learning Programming For Students 
In Neuroscience 
Cognitive neuroscience is a highly interdisciplinary field that 
has come to rely heavily on computational approaches, 
however the home departments for cognitive neuroscience 
classes do not typically emphasize coursework in computer 

science (e.g., computer science courses are not required in 
my home department of psychology; Juavinett, 2020, 2022; 
Ho et al., 2021). Therefore, there is a huge divide between 
the skills that students need to know and what they are 
actually learning. Specifically, I do not know any cognitive 
neuroscience labs that do not make active use of computer 
science in all aspects of their projects, such as task 
development (e.g., showing participants images or movies 
with toolboxes such as PsychoPy in Python: Peirce, 2007; 
Peirce et al., 2019; or PsychToolbox in MATLAB: 
Brainard, 1997), the creation of more immersive VR tasks 
with video game engines (e.g., we have worked to develop 
the Landmarks package for the Unity game engine: Starrett 
et al., 2020), data collection (e.g., writing scripts to interact 
with fMRI or EEG hardware; e.g., Lab Streaming Layer 
[liblsl]: Stenner et al., 2023), data preprocessing (e.g., 
cleaning fMRI or EEG data; e.g., Nipype: Gorgolewski et 
al., 2011), data analysis (e.g., the Python package Nilearn 
for fMRI data: Abraham et al., 2014; MNE-Python for EEG 
data: Gramfort et al., 2013; the Python package pandas: 
McKinney, 2010) and figure generation (e.g., the Python 
packages matplotlib: Hunter, 2007; and seaborn: 
Waskom, 2021; see Table 1). If we want to teach students 
about what it is like to be a cognitive neuroscientist, we 
should expose them to tools that we use in our field, similar 
to students in art getting the opportunity to practice picking 
up a paintbrush if they want to become studio artists working 
on paintings. 
     There is currently a missed opportunity for providing a 
more inclusive training opportunity in computational 
approaches for students across the curriculum (e.g., the 
Computing in Undergraduate Education [CUE] initiative of 
the National Science Foundation [NSF], e.g., NSF Award 
1935099). For example, students might not even know that 
they are interested in or capable of becoming a programmer 
until they have learned about it and seen it in practice within 
a specific discipline in which they are interested. Like many 
other practicing neuroscientists, I did not learn how to 
program until I was a Ph.D. student. Thus, we can increase 
the diversity of students that go on to use programming by 
providing opportunities for them to meaningfully engage with 
programming within a topic that they are interested in 
studying (e.g., if a student signs up for our course in 
cognitive neuroscience, then it means that they hopefully 
have at least a surface-level interest in the topic; Juavinett, 
2020). Accordingly, implementing these approaches early in 
the curriculum provides an opportunity for students to 
change or extend their course of study for the remainder of 
their time in college and beyond. Furthermore, early 
exposure within the undergraduate curriculum provides an 
opportunity for students to get a more in-depth 
understanding and proficiency of concepts in higher-level 
cognitive neuroscience courses and it may increase student 
engagement and retention, as in research experiences in 
other areas of science (e.g., Rodenbusch et al., 2016). 
     Python has firmly established itself as one of the most 
popular programming languages over the past decade and 
it offers several features that are attractive for cognitive 
neuroscience. First, Python is part of the free and open-
source software (FOSS) community, thus making it ideal for  
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Package Primary use 
BrainIAK (Kumar et al., 2022) fMRI analysis 
Matplotlib (Hunter, 2007) Figure creation 
MNE-Python (Gramfort, 2013) EEG analysis 
Nilearn (Abraham et al., 2014) fMRI analysis 
Nipype (Gorgolewski et al., 2011) fMRI analysis 
NumPy (Harris et al., 2020) Data container 
pandas (McKinney, 2010) Data container 
PsychoPy (Peirce, 2007; Peirce et al., 
2019) 

Stimulus 
presentation 

scikit-learn (Pedregosa et al., 2011) Data analysis 
SciPy (Virtanen et al., 2020) Data analysis 
Seaborn (Waskom, 2021) Figure creation 
statsmodels (Seabold and Perktold, 2010) Data analysis 

 
Table 1. An overview of valuable Python toolboxes that showcase 
the benefit of teaching students Python for learning skills for 
cognitive neuroscience. Teaching students even a little bit of 
Python programming can go a long way toward helping them learn 
how to implement all aspects of an experiment, from stimulus 
presentation (e.g., PsychoPy) to cutting-edge analyses within 
modern Python toolboxes (e.g., Nilearn, MNE-Python). 
 
using in the classroom, where you no longer have to worry 
about licenses and expensive software. Moreover, the 
FOSS ecosystem makes it possible to provide more open 
and transparent practices in cognitive neuroscience (e.g., 
sharing our code for data analysis, writing pipelines that will 
generate all of our figures for a paper) (Nichols et al., 2017). 
Second, Python has a relatively simple syntax that is an 
ideal choice for beginner programmers. Third, Python has 
an extensive set of add-on toolboxes, many of which are 
specifically important for cognitive neuroscience (Table 1). 
Specifically, scikit-learn (Pedregosa et al., 2011) is one 
of the leading machine learning toolboxes and Nilearn 
(Abraham et al., 2014) provides a wrapper for fMRI analysis 
with many of the scikit-learn packages and it provides 
a collection of functions that are useful for both activation 
analysis and MVPA. Thus, by teaching students about two 
of the broad classes of fMRI analysis in these notebooks, 
educators can also provide a framework for them to 
understand the more general syntax of running machine 
learning analysis with scikit-learn and Python. Finally, 
Python is a very marketable skill and thus teaching students 
about it in your class can make them more marketable for 
future research or job opportunities (see DISCUSSION). 
    In the remainder of this paper, I describe a collection of 
resources that I developed for teaching students how to 
conduct two of the main analytic techniques for fMRI—
activation analysis and multivariate pattern analysis—using 
Python. Following these Python notebooks, I assign a 
writing assignment in which I ask students to critically reflect 
on the disparate results across these two analyses to 
discuss how methods can guide our theories of the 
relationship between the brain and high-level cognition. 
Below, I also provide suggestions for incorporating these 
Python notebooks into your curriculum. 
 
MATERIALS AND METHODS 
Course Overview 
I developed these activities for my introductory cognitive 

neuroscience course at Colby College, a small liberal arts 
college. Our semesters are 13 weeks of instruction plus an 
additional week for final exams, resulting in 25 class 
meetings of 1.25 hours each. I have used the assignments 
that I describe here for 3 semesters. The course cap is 35 
students and I generally have a full enrollment. The only 
prerequisite for this class is our Introduction to Psychology 
course, where students receive a brief overview of the 
relationship between the brain and behavior, but there is no 
specific cognitive neuroscience prerequisite. Additionally, 
and importantly for the purpose of the materials that I 
describe here, I do not expect students to have any 
experience with programming or statistics, and the majority 
of students in my class have no prior programming 
experience. Thus, I believe you, like me, can implement 
these assignments at the level of an introductory 
neuroscience course but I also think they will be useful in 
upper-division courses, graduate-level courses, and as a 
first analysis for people working in labs that use fMRI. For 
more information, please see Implementing this Module 
into your Curriculum. 
     The learning goals for the course mirror the learning 
goals for this lesson plan: 

1. Describe the scientific method through the lens of 
cognitive neuroscience. 

2. Apply the critical thinking skills of science to new 
areas of research and analysis. 

3. Discuss and critique methodological approaches to 
cognitive neuroscience, including the strengths and 
limitations of each method. 

4. Evaluate our knowledge (and the limits of our 
knowledge) of the connection between the brain 
and high-level cognitive functions. 

Thus, our primary goal in this course is to learn how to think 
like a cognitive neuroscientist. 
 
I include both aggregate and specific comments from 
students in the RESULTS section. The inclusion of the data 
(from a homework assignment and anonymous course 
evaluations) was approved by the Institutional Review Board 
at Colby College. 
 
A Brief Introduction to the Dataset 
I use the Haxby et al. (2001) dataset, which is readily 
available via Nilearn (Abraham et al., 2014). The 
experiment consisted of showing participants images from 8 
categories: faces, houses (i.e., “places”), cats, bottles, 
scissors, shoes, chairs, and phase-scrambled images of the 
objects. The object categories were presented in a block 
design that alternated between 12 seconds of “rest” and 24 
seconds of viewing images from a given category. 
Participants viewed images from all 8 categories within each 
run and the order of categories was randomized within each 
run. Each participant completed 12 runs.  
     I focus the analysis on a single participant because the 
papers that discovered FFA (Kanwisher, 2010) and PPA 
(Epstein and Kanwisher, 1998) analyzed data within each 
participant separately (i.e., having students inspect the 
resultant activation maps from a contrast of faces vs. the 
other seven categories as well as “places” vs. the other  
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Figure 3. Analysis flow diagram for the two Python notebooks. In the Exploration: Activation Analysis, students learn about how to conduct 
an activation analysis for a single participant to test whether specialized regions process information about faces and places. They also 
learn about the importance of correction for multiple comparisons within cognitive neuroscience. In the Exploration: Multivariate Pattern 
Analysis (MVPA), students test whether voxels that respond maximally to faces or places (i.e., the putative fusiform face area and 
parahippocampal place area, respectively) also process information about non-preferred categories (here, cats and shoes). Please see 
the MATERIALS AND METHODS section for more details. Notes about abbreviations: GLM=general linear model, TR=repetition time. 
 
seven categories allows them to take the same approach 
that the researchers did when they discovered these 
regions). Additionally, for the purpose of my class, focusing 
the analysis on a single participant allows me to teach 
students the general approach for both activation analysis 
and MVPA. It would be easy to extend these notebooks to 
include more participants (e.g., by changing the participant 
that we analyze or by looping the analysis over all of the 
participants) or to run group-level statistical analysis (e.g., 
using Nilearn functions such as SecondLevelModel [for 
activation analysis] or custom-written code [e.g., to average 
classification accuracy and compare it to chance, via t-tests 
or permutation tests, for multivariate pattern analysis]). 
These additional analyses would be well suited for an upper-
division undergraduate course or a graduate-level course. 
 
The Python Notebooks 
In these Python notebooks, I use Nilearn (Abraham et al., 
2014), pandas (McKinney, 2010),  NumPy (Harris et al., 
2020), matplotlib (Hunter, 2007), and the freely available 
Haxby dataset (Haxby et al., 2001) to implement two of the 
main analysis frameworks for fMRI, activation analysis and 
MVPA, to explore the classic findings that were used to 
advance the theory that the brain supports high-level visual 
cognition via functionally specialized regions (Kanwisher et 
al., 1997; Epstein and Kanwisher, 1998) as well as the 
opposing findings that support the theory of distributed 
representations (Haxby et al., 2001). I use Nilearn 
tutorials as starting points for writing these notebooks 
(Nilearn Contributors et al., 2023), but I heavily modified and 
extended these examples to allow undergraduate students 
to recreate the classic discovery of the FFA (Kanwisher et 
al., 1997), the PPA (Epstein and Kanwisher, 1998), and the 
initial challenge to these findings that suggests that high-
level category representation is instead supported by 
distributed representations (Haxby et al., 2001). Thus, while 
there are other resources for learning fMRI analysis (e.g., 
Nilearn Contributors et al., 2023; Kumar et al., 2020; Jahn 
et al., 2022), the difference with the tutorials here is that I 
focus on showcasing the dynamic interplay between our 
methods and theories of the brain (i.e., rather than focusing 
on learning methods per se). Moreover, these notebooks 

can be implemented in a short period of time, thus allowing 
integration in an introductory course. 
     The Python notebooks (i.e., Jupyter Notebooks) can 
be downloaded from my GitHub repository (also see the 
wiki) and run either within JupyterHub (e.g., via your 
institution), a local installation of Jupyter Notebooks 
(e.g., Anaconda), or without the installation of any software 
via Google Colaboratory. If you decide to run these 
notebooks locally via Anaconda, then I recommend that you 
create a new virtual environment and then you can install 
Nilearn within your new environment (please see this 
page of the GitHub repository for more details on this 
approach). Running things via Google Colaboratory is the 
easiest option in terms of software installation (i.e., there is 
no installation required); however, this will be the slowest 
approach for your students. Thus, if possible, I would 
recommend the other two approaches (e.g., you could use 
an on-campus computer lab in which you install Python and 
Nilearn for students to run these exercises), but the Colab 
approach could work well in many cases (e.g., if you have a 
large class and you have minimal resources via your IT 
department). All three options are completely free and I have 
verified that all they all work across multiple operating 
systems, etc. 
     In addition to our in-class discussions and the Python 
notebooks, I provide video walkthroughs of both of the 
Python notebooks. I find these to be a helpful resource for 
students because they can pause the videos, rewatch parts 
that they find difficult, etc. In a nutshell, the videos allow 
students to work on the notebooks at their own pace and I 
provide detailed information about the logic of the analysis 
as well as more background and explanation about each line 
of code in the notebook. I have also made these videos 
freely available, and you can find more information about the 
videos within the GitHub repository. 
 
Using Activation Analysis to Test the Theory of Functional 
Specialization 
In the first notebook, Exploration: Activation Analysis, I teach 
students how to employ activation analysis to show how it 
can be used to test the theory of functional specialization. 
This notebook focuses on having students implement an 
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analysis to find evidence for the FFA and the PPA. Here, I 
provide a brief overview of the main steps that I implement 
in the notebook and I provide some rationale for why I 
implement each part of the analysis. 
     The first step of the activation analysis is to load all of the 
relevant fMRI and behavioral data (i.e., regarding stimulus 
timing) so that we can have all of the requisite data for 
analysis. I make use of Nilearn functions for loading the 
data and pandas for loading the stimulus timing information 
(i.e., a pandas DataFrame that contains the onset and 
duration of each stimulus within each run). 
     The second step is to run a general linear model (GLM) 
analysis to elucidate the BOLD response to each condition. 
Here, I use the FirstLevelModel function from Nilearn 
to run the analysis. This function also allows you to specify 
nuisance regressors (i.e., terms in the regression analysis 
that attempt to deal with noise; e.g., as a form of 
preprocessing). Here, students will implement a 3rd-order 
polynomial drift (i.e., this includes three terms: a linear, 
quadratic, and cubic function) and a high-pass filter of 0.01 
Hz, both of which attempt to attenuate low-frequency noise 
(e.g., caused by scanner drift over the course of each run). 
You also pass other key information to this function, 
including the repetition time (TR; i.e., the time between 
frames; for this dataset, the TR was 2.5 seconds), the type 
of hemodynamic response function model that you want to 
run (here, I used the ‘spm’ option), as well as other 
information (which you can see in the notebook). Following 
the typical syntax of scikit-learn (Pedregosa et al., 
2011), in Nilearn you first set up the parameters of your 
model and then you can fit that model via object-oriented 
programming (e.g., here we set up a variable called 
fmri_glm to be the output of our call to the 
FirstLevelModel function, and then we can run the 
model by calling fmri_glm.fit() along with the input of 
our fMRI data and the stimulus timing information). After 
fitting the model, I ask students to inspect and interpret the 
design matrices (i.e., the columns of the design matrix are 
all of the variables that we are modeling [the task conditions 
as well as nuisance regressors] and the rows indicate the 
times [i.e., the frame number]) by viewing them via 
matplotlib, which is a key step in fMRI data analysis. 
     The third step is to set up contrasts to determine which 
voxels are more active in response to faces vs. the other 7 
categories (i.e., to look for the FFA) as well as to houses vs. 
the other 7 categories (i.e., to look for the PPA), and the idea 
is to set up contrasts that sum to zero. Contrasts are 
common in statistical analyses, and they create a 
straightforward method for determining if the mean of one 
condition (or group of conditions) differs from the mean of 
another condition (or group of conditions). Here, we are 
specifically interested in determining whether the mean 
BOLD activity is greater for faces vs. the other visual 
categories as well as for houses vs. the other 7 categories. 
We can create these two contrasts by setting up 1-D NumPy 
arrays with the column of interest to a value of 7 and the 
columns for the other 7 categories to a value of -1. We also 
set the 3 drift and the constant columns to be 0 for the 
contrast (i.e., to effectively ignore these from the analysis). 

For example, here is the contrast for faces vs. the 7 other 
categories: 

 
The sum of the contrast is zero (7 + (-1 * 7) + (0 * 4) = 0). 
We code these contrasts by inspecting the design matrix 
columns to determine which columns correspond to faces 
(for the faces contrast) or houses (i.e., for the “places” 
contrast). We compute the contrast using the Nilearn 
method compute_contrast (we can implement using our 
existing fmri_glm object via object-oriented programming: 
fmri_glm.compute_contrast() with the input of the 
contrast) and I specify the output to be a z-score for 
follow-up statistical analysis. Next, I have students generate 
brain maps by thresholding the z-score map to see which 
voxels had a contrast that was significantly different than 
zero. First, we create uncorrected maps by setting a voxel-
wise alpha threshold of 0.001 via Nilearn’s 
threshold_stats_img (i.e., the threshold will only 
display voxels that are significantly different than zero, 
based on a voxel-wise p < 0.001). I then have students save 
the image to an html file so that they can view it later (see 
step 5) in a 3-D viewer within a web browser to compare it 
to an atlas of Brodmann areas. 
     The fourth step is for students to learn about how to apply 
correction for multiple comparisons to the brain maps. While 
there are many approaches to correcting for multiple 
comparisons with fMRI data (e.g., cluster-level thresholds; 
e.g., see Chapter 7 of Poldrack et al., 2011), for the purpose 
of this notebook and for my class (e.g., simplicity), I use the 
false-discovery rate (FDR) method by again using the 
Nilearn function threshold_stats_img with an 
additional input of ‘fdr’ for height_control. 
     The fifth step is for students to look at an atlas to 
determine the names of regions with activated voxels from 
the faces contrast as well as the “places” contrast. Here, I 
have students use the BioImage Suite mni2tal webpage 
(Lacadie et al., 2008). For instructors, please note that the 
data are in the participant’s native space, thus the 
coordinates within the BioImage Suite page do not map on 
to the coordinates of the brain maps that we generate in the 
notebooks. Rather, I ask students to look for the general 
anatomical features between scans to try to identify the 
locations within the atlas (e.g., using landmarks such as the 
lateral ventricles, hippocampus, thalamus, and cerebellum 
can be useful as they explore the brain maps and the atlas). 
     In the final part of the notebook, I walk students through 
the importance of the correction for multiple comparisons by 
simulating the number of false positives that we would 
observe with totally random data. Here, the idea is to show 
students that false positives are an intended consequence 
of the assumptions of frequentist statistics (e.g., as 
employed in a t-test). In addition to elucidating the 
importance of correction for multiple comparisons, I hope 



The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2024, 22(3):A273-A288      A279 
 

that this section teaches students more about what a p-value 
actually indicates in the first place (i.e., the proportion of 
false positives that we are willing to accept), which I feel is a 
somewhat complicated concept for undergraduates. Please 
see Figure 3 for a flow diagram of the activation analysis. 
 
Using Multivariate Pattern Analysis to Test the Theory of 
Distributed Representations 
In the second notebook, Exploration: Multivariate Pattern 
Analysis, I teach students how to implement multivariate 
pattern analysis to show how it can be used to test and 
support the theory of distributed representations. The 
analysis in this notebook focuses on replicating one of the 
initial classic challenges to the theory of functional 
specialization by showing that the putative FFA and PPA 
carry information about categories other than those to which 
they respond maximally (Haxby et al., 2001). I specifically 
implement machine-learning analysis using a linear support 
vector machine (SVM) (Cortes and Vapnik, 1995), which is 
one of the most commonly applied type of classifier for fMRI 
analysis (Norman et al., 2006; Grootswagers et al., 2017). 
One benefit of the linear SVM is that it can handle situations 
in which we have many features (e.g., voxels) relative to the 
number of trials (Grootswagers et al., 2017). Here, I will 
provide a brief overview of the main steps that I implement 
in the notebook as well as provide some rationale for why I 
implement each part of the analysis. 
     The first step of the multivariate pattern analysis, as in 
the activation analysis, is to load all of the relevant fMRI and 
behavioral data (i.e., regarding stimulus timing) so that we 
can have all of the requisite data for analysis. I again make 
use of Nilearn functions for loading the data and pandas 
for loading the stimulus timing information (here, the labels 
of task events for each frame of data as well as the stimulus 
onset and duration information for the frame-based analysis 
as well as the GLM-based analysis, see steps 2 and 3 as 
well as Figure 3). 
     The second step is to run multivariate pattern analysis 
using a linear SVM on the raw data from each individual 
frame of data (i.e., each TR). In the first analysis, I show 
students how to analyze the classification accuracy for faces 
vs. houses (i.e., “places”) within the entire ventral temporal 
cortex. Here, I use the Nilearn functions Decoder and 
LeaveOneGroupOut, and I specify the linear SVM by 
passing the ‘svc’ option to the estimator parameter for 
Decoder. Moreover, we z-score the data to have a mean of 
zero and unit variance by setting the standardize 
parameter to True, which is a common procedure for 
working with machine-learning classifiers. We run the 
analysis using leave-one-run-out cross-validation via the 
Nilearn function LeaveOneGroupOut. I then show 
students how I created functions to run these lines of code 
with different inputs so that we can look at different category 
comparisons as well as different regions of interest. Next, 
we follow up the analysis of the entire ventral temporal 
cortex by looking at the classification accuracy for faces vs. 
“places” within voxels that responded maximally to “places” 
(i.e., these voxels would correspond to the putative PPA). 
Next, we follow up this analysis by looking at the 
classification accuracy for the comparison of non-place 

stimuli, cats vs. shoes, within the voxels that responded 
maximally to “places”, which replicates one of the key 
analyses from Haxby et al. (2001). I then ask students to 
reflect on the results of these analyses. 
     The third step is to use a general linear model to create 
cleaner estimates of the patterns of activity in response to 
each category for each run for running multivariate pattern 
analysis. Here, the idea is that the individual frames of data 
(i.e., TRs) will contain noise, but we can create cleaner 
patterns of activity by effectively averaging over all of the 
frames within each run that correspond to a given category. 
Arguably, the best approach for implementing such a 
cleaning procedure would be to extract the statistical 
estimates from a general linear model (e.g., the z-statistics) 
that is run on each run and then to use these statistical 
estimates as the input to the classification analysis (e.g., 
Misaki et al., 2010; Chapter 9 of Poldrack et al., 2011). Thus, 
here, I modified my code from the activation analysis 
notebook to enable us to run the GLM procedure and extract 
the statistical maps for each category for each run. Then, I 
wrote some custom functions to allow us to run this 
procedure for various parameters for the region of interest 
and the comparison of different categories. First, we run the 
combined GLM/classification analysis for the comparison of 
faces vs. “places” within the entire ventral temporal cortex. 
Next, we run the classification of cats vs. shoes within the 
entire ventral temporal cortex. Then, we repeat these two 
analyses (i.e., faces vs. “places” and cats vs. shoes) within 
voxels that respond maximally to faces (i.e., the putative 
FFA) and then within voxels that respond maximally to 
“places” (i.e., the putative PPA), which replicates a key 
comparison of testing how selective the information content 
is within FFA and PPA (Haxby et al., 2001). Please see 
Figure 3 for a flow diagram of the multivariate pattern 
analysis. 
 
Implementing this Module into your Curriculum 
Programming Instruction Prior to These Python Notebooks 
As I mentioned in the Course Information section, I do not 
require prior programming or statistics background for this 
course, and the majority of students have no programming 
background coming into my class. Thus, before completing 
the Python notebooks, I ask students to read pages from the 
SciPy Lecture Notes (Varoquaux et al., 2017), watch videos 
(https://nsf-cue-frameworks.github.io/www/videos.html; part 
of NSF award 1935099), and complete simple assignments 
to learn about basic Python commands (Table 2). The 
programming assignments ask students to answer 
questions from the readings and videos and to get practice 
with Python (e.g., typing the commands from the reading, 
creating their own functions to implement simple 
computations). Altogether, I feel that these two weeks of 
Python basics help set the stage for the Python analysis 
notebooks. I would be happy to provide the specific readings 
and assignments upon request (Tables 2, 5). 
 
How I Teach the Section with These Python Notebooks 
For this section of the course, we read Chapters 1-4 and 7 
(Ward, 2020) (Table 2). In the first 1.5 weeks of the course, 
we cover neuroscience fundamentals, including the mind- 
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Week Topic Reading Programming 
1 The mind-body 

problem 
Chapter 1 
(Ward) 

N/A 

2 Overview: from 
neurons (parts of 
a neuron, action 
potentials, 
neurotransmitters) 
to systems 
(broad-scale 
overview of 
neuroanatomy) 

Chapter 2 
(Ward);  
pg. 12-18 
(Varoquaux 
et al., 
2017) 

Video: 
“Assignments & 
naming – video 1” 
Assignment: 
practicing with 
variables, 
functions, math 
operations, lists 

3 Electrophysiology 
(single neurons 
and EEG); 
representations 
(localist, partially 
distributed 
representations, 
fully distributed 
representations) 

Chapter 3 
(Ward);  
pg. 20-26 
(Varoquaux 
et al., 
2017) 

Videos: 
“Introduction to 
Functions”, 
“Calling Built-in 
Functions”, and 
“Calling Functions 
in Python” 
Assignment: 
dictionaries, 
tuples, objects the 
assignment 
operator, if 
statements, for 
loops, list 
comprehensions, 
creating and 
calling functions 

4 Brain imaging 
(fMRI) 

Chapter 4 
(Ward) 

Exploration: 
Activation 
analysis 

5 Visual cognition Chapter 7 
(Ward) 

Exploration: 
MVPA 

6 In-class workshop N/A AWA1 
 
Table 2. An overview of the first section of the course in which I use 
the teaching materials that I describe here. In addition to the 
assignments listed here, each week students responded to 
questions that I wrote to get students to think about the big-picture 
importance of each reading, thus these questions served as a 
scaffold for the bigger writing assignment at the end of this section. 
The videos are part of an NSF award for teaching programming: 
https://nsf-cue-frameworks.github.io/www/videos.html I use 
the 2020.2 edition of the SciPy Lecture Notes (Varoquaux et al., 
2017) and omit some sections for concision. Abbreviations: 
MVPA=multivariate pattern analysis, AWA1=Analytical and Writing 
Assignment #1 (the combination of the Explorations [i.e., the 
analytical part] and responses to questions about the interpretation 
of the results and other materials from discussions and readings 
[i.e., the writing part]).  
 
body problem, the action potential, neutotransmitters and a 
broad overview of neuroanatomy in which we discuss the 
importance of the inputs and outputs of a region in 
constraining its possible functions (e.g., by discussing 
primary cortical areas vs. secondary cortical areas vs. 
association cortex; Week 1 and 2 in Table 2). 
     In the third week of the course, we discuss the concepts 
of neural representations, single-cell electrophysiology, 
scalp electroencephalography (EEG), and the notion of rate 
codes vs. temporal codes (e.g., oscillations). We first 
discuss the idea that the neural responses of the primary 
visual cortex would not give rise to invariant object 
representation (here, giving an example of how moving 

stimuli around in the visual field would elicit totally unique 
neural responses in early visual cortex). Then, we continue 
this conversation by talking about the concepts of local 
representations (i.e., the “grandmother cell” concept) vs. 
partially distributed representations vs. fully distributed 
representations (Chapter 3 from Ward, 2020 is a helpful 
primer for these conversations). We then discuss findings 
from a study in nonhuman primates (Baylis et al., 1985) that 
suggests that the brain uses sparse distributed 
representations for coding of categories such as faces. 
Then, we discuss evidence for more localized 
representations in humans (Quiroga et al., 2005) in 
response to famous faces and places (e.g., the so-called 
“Halle Berry”/”Jennifer Aniston” neuron paper). Even here, 
however, we talk about the notion that these results could 
also be interpreted as evidence for sparse distributed 
representations (e.g., there was some mixed selectivity of 
neurons coding for associations between stimuli). Next, we 
talk about how the properties of synaptic transmission can 
enable us to measure electrical potentials at the scalp with 
EEG. We then discuss the concept of event-related 
potentials, and we focus on the N170, which is an event-
related potential that is larger in response to faces than other 
categories of stimuli (e.g., cars, other objects: Bentin et al., 
1996), and it has been interpreted as evidence that face 
processing recruits specialized neural modules (i.e., 
evidence of functional specificity). Then, we discuss a study 
that suggests that the N170 might reflect expertise (i.e., 
because we have a lot of experience processing faces), 
rather than something fundamental about faces per se 
(Tanaka and Curran, 2001). Specifically, Tanaka and 
Curran (2001) showed a double dissociation between the 
N170 amplitude in response to birds vs. dogs in bird and dog 
experts. Thus, I would like to highlight here that I attempt to 
discuss the concept of visual cognition and the evidence for 
and against the theory that face processing recruits a 
specialized neural module, thus students can use these 
discussions in their writing assignment and it helps set the 
stage for our discussion of fMRI in the next week and with 
the Python notebooks. We conclude our discussion this 
week by talking about the concepts of rate coding vs. 
temporal coding (e.g., neural coherence, spike-timing-
dependent plasticity, and neural oscillations) (Fries, 2005).  
     In the fourth week of the course, we discuss the concepts 
of MRI physics, the hemodynamic response, the general 
linear model (GLM), and the logic of applying the GLM to 
measure the BOLD activity. When we discuss the GLM, I 
found it to be helpful to give a real-world example within the 
realm of plant growth. Here, I ask students to imagine that 
we begin 3 different interventions or treatments to plants and 
then we measure their growth over time. The idea is to help 
students think about the concept that treatments that have a 
larger effect will result in a faster rate of growth, which would 
translate into a steeper slope (i.e., a greater resultant beta 
weight). Similarly, for fMRI activation analyses, voxels that 
have a larger beta weight for a given condition (e.g., faces) 
relative to other conditions would suggest that these voxels 
are influenced more strongly by faces compared to the other 
conditions. I then proceed to show students examples of 
expected and simulated fMRI timecourses and I ask them to 
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visually and mentally calculate beta weights for different 
examples (in think-pair-share style activities), thus allowing 
them to get a better understanding of the logic of the GLM-
based fMRI analysis prior to completing the notebooks (you 
can access the slides for the GLM introduction and activities: 
https://doi.org/10.17605/OSF.IO/UJWK6). We also discuss 
how we can implement machine learning analysis (e.g., 
linear SVM) by covering a simple example that I developed: 
deciding whether or not to eat at a restaurant based on both 
the rating and the cost of the food and then showing how we 
can apply this logic to fMRI analysis to study distributed 
representations (you can access the slides for this 
discussion here: https://doi.org/10.17605/OSF.IO/UJWK6). 
     In the fifth week, we discuss vision, beginning with the 
primary visual cortex and ending with a discussion of high-
level vision and an overview of our findings from the Python 
notebooks. I begin this section by discussing the 
topographic organization of the primary somatosensory 
cortex and primary motor cortex, the tonotopic organization 
of the primary auditory cortex, and the retinotopic 
organization of the primary visual cortex. Then, we go into 
detail about how researchers have used fMRI to further our 
understanding of early visual cortex in humans. For 
example, we talk about how researchers have used ring and 
wedge stimuli to study retinotopic maps in human early 
visual cortex (Dumoulin and Wandell, 2008; Wandell and 
Winawer, 2011). Then, I ask students to make predictions 
about the impact of lesions in various locations of early 
visual cortex (i.e., to connect fMRI with the study of patients 
with localized brain damage; here, scotoma, 
quadrantanopia, and hemianopia). We then talk about the 
single-cell electrophysiological studies that discovered the 
nature of the receptive fields of lateral geniculate nucleus 
and the primary visual cortex, and we focus on “simple cells” 
in the primary visual cortex. Then, we talk about how fMRI 
has been used to show that the human primary visual cortex 
contains similar representations. For example, we discuss 
how researchers have applied voxelwise encoding models 
with a Gabor model, which approximates the “simple cell” 
receptive fields of the primary visual cortex (V1), to show 
that it provides the best fit for V1 and then is progressively 
worse higher in the visual hierarchy (V2, V3, and V4) (Kay 
et al., 2008; Kay, 2011).  
     We next discuss the coding properties of higher-level 
visual cortex. First, we discuss a paper that compared 
voxelwise encoding models of the Gabor model vs. a 
semantic model and found that the Gabor model does a 
better job of accounting for responses in early visual areas 
(e.g., V1 as well as V2 and V3) while the semantic model 
provided a better fit of higher-level visual areas (e.g., the 
anterior portion of lateral occipital cortex and anterior 
occipital cortex; Naselaris et al., 2009). Then, we talk about 
patients with visual agnosia as an introduction to concept of 
object recognition. We then discuss a few more examples of 
seemingly functionally specialized regions for processing 
movement (typically called V5 in humans or MT in 
nonhuman primates; e.g., patient studies of akinetopsia: Zihl 
et al., 1983; Zeki, 1991; as well as the finding that this region 
responds to the Enigma illusion [i.e., illusory motion]: Zeki et 
al., 1993), hemineglect following damage to the right parietal 

lobe, and the finding that V2 neurons respond to the illusory 
triangle (Von Der Heydt et al., 1984; for more information 
see Chapter 7 of Ward, 2020). We also discuss the dorsal 
vs. ventral visual streams hypothesis for processing 
“where”/“how” information (i.e., spatial processing) and the 
ventral visual stream in processing “what” information (i.e., 
object processing) throughout the course (e.g., when we 
discuss neuroanatomy and here; e.g., Mishkin et al., 1983). 
Then, we go into detail discussing the results of our 
Exploration: Activation Analysis notebook, and I show 
students how similar our results are to the original studies 
that discovered the FFA (Kanwisher et al., 1997) and PPA 
(Epstein and Kanwisher, 1998; I enjoy showing figures of 
our results next to a paper that was published in Nature).  
     We conclude this section by discussing the evidence for 
and against the hypothesis of category specificity for face 
processing. For example, in support of the theory of 
functional specificity for face processing, we discuss 1) the 
findings from our activation analysis, 2) patients with 
prosopagnosia (e.g., the finding that patients could have 
relatively selective impairment for processing faces: Sergent 
and Signoret, 1992; but note that other accounts have 
shown a more domain general deficit in face and object 
recognition: Barton and Corrow, 2016; Geskin and 
Behrmann, 2018), 3) stimulation of putative FFA causes 
changes in face processing (Parvizi et al., 2012), and 4) we 
revisit the finding of the greater N170 for faces vs. other 
categories (Bentin et al., 1996). We then discuss some initial 
challenges for the hypothesis of category specificity in face 
processing, and we focus on the expertise hypothesis. For 
example, I remind students of the finding of differential N170 
findings in category experts (i,e., bird and dog experts: 
Tanaka and Curran, 2001) and I discuss how these findings 
extend to fMRI, where researchers have shown that the FFA 
shows differential activity in category experts (e.g., car and 
bird experts: Gauthier et al., 2000) and the finding that new 
learning of complex object discrimination caused increased 
activation of FFA (e.g., Greebles: Gauthier et al., 1999). I 
conclude by reiterating to students that this week’s 
homework assignment (Exploration: Multivariate Pattern 
Analysis) allows students to test the theory of distributed 
representations. 
     At the end of this section, students respond to several 
prompts that get them to think about the results of both 
Python notebooks as well as how the concept of converging 
operations (e.g., McNamara, 1991) can provide stronger 
evidence for our theories (I provide the writing prompts here: 
https://doi.org/10.17605/OSF.IO/UJWK6). Note, as I discussed 
above, I like the fact that the results of our notebooks as well 
as an examination of the literature does not support the 
notion of clearcut “right” or “wrong” answers for how visual 
cognition works, rather students get a chance to evaluate 
the data to come to their own conclusions, similar to what 
we do in our research programs. The week that the writing 
assignment is due, I hold an in-class workshop in which I 
provide opportunities for students to ask questions about the 
course material and the Python notebooks. 
 
RESULTS 
Here, I briefly describe the results of the Python analysis 
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Figure 4. The results of the activation analysis contrast of faces vs. 
all other categories revealed clusters of voxels in the fusiform gyrus 
(i.e., putative fusiform face area), as generated in Notebook #1. 
Here, the map shows the results of FDR-corrected voxelwise 
threshold of p < 0.001. These results can be compared to the 
original discovery of the fusiform face area (see Figures 1 and 2 
from Kanwisher et al., 1997; please note that the left/right 
information from the Haxby et al. (2001) data was lost so we cannot 
infer anything about laterality in our data here). 
 
notebooks and I discuss how students responded to these 
assignments. Please see the MATERIALS AND METHODS 
and DISCUSSION for suggestions for implementing this 
module into your curriculum. 
 
Using Activation Analysis to Test the Theory of 
Functional Specialization 
In the first Python notebook (Exploration: Activation 
Analysis), I show students how to run a contrast to compare 
the activation of faces vs. the seven other categories 
(houses [i.e., “places”], cats, bottles, scissors, shoes, chairs, 
and phase-scrambled images of the objects) to test the 
theory that face processing is implemented in specialized 
neural machinery within the FFA (Kanwisher et al., 1997) as 
well as “places” vs. the seven other categories to test the 
theory that “place” processing is implemented in specialized 
neural machinery within the PPA (Epstein and Kanwisher, 
1998). In the first analysis, students create brain maps for 
these two contrasts that are not corrected for multiple 
comparisons. In the second analysis, students apply an 
FDR correction to the brain maps for the faces vs. other 
categories contrast and the “places” vs. other categories 
contrast. I also show students the importance of correcting 
for multiple comparisons by exploring simulations of random 
data to see the proportion of false positives that they 
observe at various alpha levels as well as various sizes of 
regions of interest (i.e., number of voxels). Here, they 
discover that the proportion of false positives corresponds to 
the alpha level, thus highlighting the importance of the 
correction for multiple comparisons and hopefully teaching 
students more about the actual assumptions of frequentist 
statistics (i.e., these tests control the false positive rate). The 
results of the activation analysis replicate the classic 
findings; specifically, we find clusters of activated voxels 
within the fusiform gyrus for the faces contrast (i.e., the 
putative FFA; Figure 4) and at the border of the 
parahippocampal gyrus and the visual association area for 
the “places” contrast (i.e., the putative PPA; Figure 5). 

 

 
 
Figure 5. The results of the activation analysis contrast of “places” 
vs. all other categories revealed clusters of voxels along the 
junction of the posterior portion of the parahippocampal gyrus and 
the anterior portion of the visual association cortex (i.e., putative 
parahippocampal place area). Please compare these results to the 
original discovery of the parahippocampal place area (see Figure 
2 from Epstein and Kanwisher, 1998; please note that the left/right 
information from the Haxby et al. (2001) data was lost so we cannot 
infer anything about laterality in our data here). 
 
Using Multivariate Pattern Analysis to Test the Theory 
of Distributed Representations 
In the second Python notebook (Exploration: Multivariate 
Pattern Analysis), students can implement machine-
learning-based MVPA to test the theory that high-level visual 
processing is implemented in distributed representations 
throughout the ventral temporal cortex (Haxby et al., 2001). 
Students perform two main classes of MVPA: analysis of 
individual frames of data (i.e., TRs) and analysis of a GLM- 
based extraction of patterns of activity for each category for 
each run. Both of these methods are commonly used in fMRI 
research, and the GLM-based patterns of activity provide 
cleaner data and results. Moreover, both methods provide 
the same overall pattern of results; therefore, here, I will 
focus my discussion on the classification analysis of the 
GLM-based patterns of activity, but the full results can be 
observed within the Python notebook.  
    Students will find that a linear SVM can classify the 
comparison of faces vs. houses (i.e., “places”) for the GLM-
based patterns of activity within the entire ventral temporal 
cortex (average classification accuracy: 100%), the voxels 
that responded maximally to faces (i.e., the putative FFA; 
average classification accuracy: 91.67%), and the voxels 
that responded maximally to “places” (i.e., the putative PPA; 
average classification accuracy: 100%; see the left panel of 
Figure 6). Next, we find that a linear SVM can classify the 
comparison of other non-face and non-place stimuli—
specifically, cats vs. shoes—within the entire ventral 
temporal cortex (average classification accuracy: 100%), 
the voxels that responded maximally to faces (i.e., the 
putative FFA; average classification accuracy: 100%), and 
the voxels that responded maximally to “places” (i.e., the 
putative PPA; average classification accuracy: 100%; see 
the right panel of Figure 6). These results replicate the 
classic finding that the putative FFA and PPA both contain 
information about stimulus categories other than the one to 
which they respond maximally (Haxby et al., 2001; e.g., one  
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Figure 6. The results of the multivariate pattern analysis revealed 
very good classification accuracy of faces vs. “places” (all 
accuracies ≥ 91.67%; see left panel) and cats vs. shoes (all 
accuracies 100%; see right panel) in the ventral temporal cortex as 
well as in voxels that responded maximally to faces (i.e., putative 
fusiform face area) and “places” (i.e., putative parahippocampal 
place area). Altogether, these results support the classic finding 
that the putative fusiform face area and parahippocampal place 
area contain information in addition to the categories to which they 
respond maximally. Note about abbreviations: VTC=ventral 
temporal cortex, FFA=putative fusiform face area (voxels that 
responded maximally to faces), PPA=putative parahippocampal 
place area (voxels that responded maximally to “places”). 
 
would be hard pressed to argue that a cat or a shoe is a 
“place”-like stimulus).  
     Altogether, the results of both Python notebooks 
replicate the classic discovery of FFA and PPA, while also 
showing that the choice of analysis plays a key role in 
shaping the kinds of conclusions that we can draw from our 
data. Therefore, these results show students that there are 
not clearcut “right” or “wrong” answers in cognitive 
neuroscience, rather we effectively instantiate our 
assumptions within our analytical techniques, which can 
lead us to different conclusions about the relationship 
between cognition and the brain. 
 
Students Responded Positively to These Assignments 
As I mentioned in the MATERIALS AND METHODS, I have 
used these assignments in three semesters of teaching my 
introductory cognitive neuroscience course. For the past two 
semesters, I collected information about students’ 
perceptions of these assignments via reflection assignments 
and additional questions in my end-of-the-semester course 
evaluations. In the reflection assignment, I ask students to 
respond to several questions, including a question in which 
I ask them how the assignments meet our course goals. The 
last time that I taught this course (Fall 2022), all 35 students 
said that the assignments meet the course learning goals. 
As one example of student responses to this question, a 
student wrote: “I think [the assignments] fit well with the goal 
of learning to think like a cognitive neuroscientist because 
we got to actually do cognitive neuroscience and interpret 
 

 
 
Figure 7. Students’ reflections on the assignments with the Python 
notebooks and subsequent writing assignments were generally 
positive. I asked students the following questions: “Do you feel that 
the Analytical and Writing Assignments supported your learning in 
this course? For example, how would these assignments compare 
(in terms of how much you feel you learned) to traditional multiple-
choice exams, etc. that might be typical in 200-level courses)?” I 
categorized the students’ responses: “Yes” = they responded 
positively with detailed comments about why they liked these 
assignments, “Maybe” = they responded with a mixed response 
(e.g., they saw value in the assignments but they also saw value in 
more traditional assessments), “No” = they noted that they thought 
that traditional assessments would have better supported their 
learning. Total responses: 2021=26, 2022=31. Also see Table 3. 
 
the results rather than just read about them in a textbook.” 
     Arguably, anonymous course evaluations give a more 
realistic view into students’ perception of these 
assignments, thus I have begun asking students to respond 
to the following question: “Do you feel that the Analytical and 
Writing Assignments supported your learning in this course? 
For example, how would these assignments compare (in 
terms of how much you feel you learned) to traditional 
multiple-choice exams, etc. that might be typical in 200-level 
courses?” Note that the Analytical and Writing Assignments 
(AWAs) are assignments in which I ask students to complete 
hands-on analysis and exploration of data (i.e., the 
analytical portion of the first Analytical and Writing 
Assignment consists of the Python notebooks that I describe 
here) and then to critically reflect on these analyses in a 
writing assignment. I implement two such assignments 
throughout the semester and the assignments described 
here account for one of these assignments (see the 
DISCUSSION for information about the second Analytical 
and Writing Assignment). Thus, while the responses to the 
questions below reflect more than solely the notebooks, I 
feel their responses are representative of students’ feelings 
of the lesson plan I presented here. I categorized the 
responses into 3 broad categories: “yes” = they responded 
positively with detailed comments about why they liked 
these assignments, “maybe” = they responded with a mixed 
response (e.g., they saw value in the assignments but they 
also saw value in more traditional assessments), “no” = they 
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Student responses 
“YES! I think studying and cramming a bunch of info into your 
head that you’re going to purge at the end of the semester is a 
waste of time, especially when we have the world at our 
fingertips all the time. I learned how to THINK like a cognitive 
neuroscientist, learning how to think is a much more valuable 
lesson that just learning what to think. I think this course 
successfully accomplished its goal… I came to a liberal arts 
college to expand my analytical thinking ability, and this course 
certainly helped assist that goal…” 
“Yes, they supported my learning and gave me an opportunity 
to apply the concepts & theories I learned to analyzing 
scientific/experimental data. They were also a test on my writing 
skills as I had to connect different ideas together effectively…” 
“I feel like I learned a different kind of information than I would 
have with exams. I think the analytical and writing assignments 
gave me the chance to apply and discuss my learning. I really 
like being able to apply actual techniques used in research…” 
“I feel very strongly that the AWAs were a better learning option 
for me than traditional exams. I actually am a student that does 
not typically mind exams, but I think some of this material was a 
bit too complex for me to have the sort of unassisted 
understanding that would be required for exams. The writing 
assignments gave prompts that allowed us to walk ourselves 
through the ideas and REALLY furthered my understanding of 
the concepts. I think these assignments were very, very well 
written and well done. These assignments are where my 
understanding of the course material was solidified.” 

 
Table 3. Students’ reflections on the assignments with the Python 
notebooks and subsequent writing responses suggests that the 
assignments helped us meet our course goals. This table shows 
the more detailed comments that are summarized categorically in 
Figure 7. 
 
noted that they thought that traditional assessments (e.g., 
multiple-choice tests) would have better supported their 
learning. As you can see in Figure 7, altogether across two 
semesters, 52 students responded “yes”, 3 students 
responded “maybe” (e.g., some positive and some negative 
comments), and 2 students responded “no”. In summary, 
the response to these questions were very positive overall. 
In addition to these data, students that responded “yes” had 
a variety of enthusiastic comments in my anonymous 
evaluations (Table 3). 
     In addition to specific comments about the nature of 
these assignments, I have heard positive things from 
students regarding teaching them Python as a skill they can 
use for applications for internships and jobs. For example, 
one student wrote in my evaluations, “We learned Python 
this semester and many internships want their applicants to 
have some familiarity with it and now I can say that I have 
that.” Moreover, I have had several students change their 
major to Computational Psychology or take more courses in 
Computer Science after taking this class. 
 
DISCUSSION 
I recommend incorporating these Python notebooks into a 
section of your course that is focused on the combination of 
methods and visual cognition (also see MATERIALS AND 
METHODS for more information). I found that the best way 
to help students to understand the importance of these 
modules is to 1) frequently explain the primary importance 

of programming for theory-testing via analysis in cognitive 
neuroscience, 2) integrate the analysis notebooks with an 
in-depth discussion of visual cognition and the major 
theories of neural representation (e.g., functional 
specialization, distributed representations, networks of the 
brain), 3) incorporate the notebooks into class goals and 
refer students back to the class goals during these activities 
and the writing assignment. The first time that I taught this 
section, I did not make the critical integration of these three 
aspects into my course. Specifically, I focused this section 
of the class on the methods of cognitive neuroscience 
without the in-depth discussion of visual cognition or the 
connection to the learning goals, which did not have as 
much of a positive impact on students. 
 
How I Teach the Remainder of the Course: A Continued 
Discussion of the Concept of Neural Representations 
After completing the first section of the course, we move on 
to complete a section on memory, with a focus on semantic 
cognition (McClelland and Rogers, 2003; Patterson et al., 
2007), episodic memory (O’Reilly et al., 2012; Barnes and 
Underwood, 1959), and spatial attention and navigation 
(Chapter 3 from Ekstrom et al., 2018; e.g., place cells: 
O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978; 
head-direction cells: Taube et al., 1990; e.g., grid cells: 
Hafting et al., 2005; e.g., interacting networks: Ekstrom et 
al., 2017). Here, we also discuss how models from 
computational cognitive neuroscience have informed 
theories of human memory, with a focus on the utility of 
distributed representations for semantic cognition (i.e., 
building on our fMRI explorations; we also do a close-read 
and in-depth discussion of neural networks and semantic 
cognition via McClelland and Rogers, 2003) vs. the use of 
pattern-separated representations (i.e., local or sparse 
distributed representations) for episodic memory (including 
hands-on exploration of computational models; Chapter 8 
from O’Reilly et al., 2012). We also discuss network theories 
of the brain for supporting spatial navigation (Ekstrom et al., 
2017). Therefore, we continue our overarching discussion of 
theories of neural representations (i.e., local representations 
vs. distributed representations vs. network interactions). We 
conclude the second section of the class with a writing 
assignment based on the students’ close-read and in-class 
discussion and activities of the paper (McClelland and 
Rogers, 2003), the hands-on exploration of the models of 
the neocortex and hippocampus (Chapter 8 of O’Reilly et al., 
2012), and our discussion of the neuroscience of navigation. 
In the final section of the course, we explore high-level 
cognition, where students choose a topic that is the most 
interesting to them and they present their findings to the 
class, including creating in-class discussion questions (e.g., 
think-pair-share-style activities; Table 4). 
 
On the Merits of Implementing Python Early for More 
Advanced Study Later in the Curriculum 
As I discussed above, I use these activities as part of my 
introductory cognitive neuroscience course because I want 
to expose students to Python programming as early as 
possible in our curriculum. Moreover, by teaching students 
about Python programming and machine learning analysis  
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Week Topic Reading Assignment 
7 Memory I: 

Studying the 
brain 

Chapter 11 
(Ward) 

 

8 Semantic 
cognition and 
neural 
networks 

Pg. 307-
315 (Ward); 
(McClelland 
and 
Rogers, 
2003) 

Discussion and 
activities re: neural 
networks and 
semantic cognition 
(McClelland and 
Rogers, 2003) 

9 Memory II: A 
computational 
cognitive 
neuroscience 
approach 

Chapter 8 
(O’Reilly et 
al., 2012) 

Computer lab: 
Exploration of 
memory via models 
of the 1) neocortex, 
2) hippocampus 
(O’Reilly et al., 2012) 

10 Spatial 
attention and 
navigation 

Pg. 203-
216, 224-
230 (Ward); 
Chapter 3 
(Ekstrom et 
al., 2018) 

 

11 In-class 
workshop 

N/A AWA2 

12 Discussions Variable Prepare slides 
13 Discussions Variable Present; Reflect 

 
Table 4. An overview of the second and third sections of the course 
in which I use the teaching materials that I describe here. Note that 
for Week 9 I implement a flipped classroom with pre-lab video 
lectures and then a full week of hands-on exploration of 
computational models in a computer lab. In addition to the 
assignments listed here, each week students responded to 
questions that I wrote to get students to think about the big-picture 
importance of each reading, thus these questions served as a 
scaffold for the bigger writing assignment at the end of Section 2 
(in green). The Discussions at the end of the class were student-
led presentations on their chosen area of remaining topics. 
Abbreviations: AWA2=Analytical and Writing Assignment #2 (the 
combination of the explorations with computational models [i.e., the 
analytical part] and responses to questions about the interpretation 
of the results and other materials from discussions and readings 
[i.e., the writing part]).  
 
of data from the human brain in an introductory course, it 
opens up the possibility for running more advanced 
analyses and projects in future semesters. For example, I 
also teach a combined Seminar in Cognitive Neuroscience 
and Collaborative Research in Cognitive Neuroscience 
course pair, where I teach students how to create their own 
tasks in PsychoPy (Peirce, 2007; Peirce et al., 2019), 
collect their own behavioral and EEG data, and preprocess 
and run advanced time-frequency and machine-learning 
based analyses with MNE-Python (Gramfort et al., 2013). 
In Spring 2022, a group of students in the collaborative 
research course worked on a project looking at spatial 
memory, and a student from that group went on to conduct 
her Senior Honors Thesis project on a related but slightly 
more elaborate experimental design. We presented our 
results of this project at the annual meeting of the Society 
for Neuroscience and we plan to finalize data collection and 
analysis and to write a paper on this project this academic 
year. Therefore, I believe that teaching Python throughout 
the cognitive neuroscience curriculum opens significant 

opportunities for students and instructors alike, which is 
especially beneficial at primarily undergraduate universities 
and colleges that value both teaching and research. 
 
Conclusion 
The field of cognitive neuroscience has seen a fierce, 
decades-long debate regarding the nature of neural 
representations that support high-level vision and category 
representation, with one set of prominent theories arguing 
for functional specificity and another set of prominent 
theories arguing for distributed representations. Importantly, 
these theories have received support via different methods, 
thus the methods that we employ make key assumptions 
that allow us to test different theories. Here, I designed 
Python notebooks to teach students how to replicate classic 
findings that discovered the FFA (Kanwisher et al., 1997; 
Kanwisher, 2017) and PPA (Epstein and Kanwisher, 1998) 
as well as important challenges to these theories that 
suggest the brain instead implements high-level vision and 
category representation via distributed representations 
(Haxby et al., 2001). I found that these assignments allow 
students to gain a deep understanding of the main theories 
and findings within cognitive neuroscience (based on their 
responses to a writing assignment in which I asked students 
to synthesize the findings of the Python notebooks, our in-
class discussions, and the readings) and students 
responded positively to these explorations. Moreover, these 
assignments form a critical building block toward the rest of 
my course and upper-division courses within our 
neuroscience curriculum. I am providing these resources 
with the aim that we can increase the involvement of 
students in high-level data analyses early in the curriculum 
 

Links to the resources from this paper 
GitHub repository for accessing the Jupyter Notebooks:  
https://github.com/huffman-spatial-cognition-
lab/exploration_of_fMRI_methods_and_theory 
Please also see the repository’s wiki page: 
https://github.com/huffman-spatial-cognition-
lab/exploration_of_fMRI_methods_and_theory/wiki 
Video walkthrough for Exploration: Activation Analysis 
https://github.com/huffman-spatial-cognition-
lab/exploration_of_fMRI_methods_and_theory/wiki/Vide
o-walkthrough:-Activation-analysis 
Video walkthrough for Exploration: MVPA 
https://github.com/huffman-spatial-cognition-
lab/exploration_of_fMRI_methods_and_theory/wiki/Vide
o-walkthrough:-MVPA 
Additional resources, including slides for teaching GLM 
and SVM concepts for fMRI and prompts for Analytical 
and Writing Assignment #1 are available at the following 
OSF repository: 
https://doi.org/10.17605/OSF.IO/UJWK6 
Videos for teaching basics of Python programming:  
https://nsf-cue-frameworks.github.io/www/videos.html 

 
Table 5. Links to the resources from this paper, including the 
Jupyter notebooks, the wiki page for getting the notebooks and 
environments set up, video walkthroughs, slides, prompts for the 
writing assignment, and videos for teaching Python basics.  

https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki/Video-walkthrough:-Activation-analysis
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki/Video-walkthrough:-Activation-analysis
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki/Video-walkthrough:-Activation-analysis
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki/Video-walkthrough:-MVPA
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki/Video-walkthrough:-MVPA
https://github.com/huffman-spatial-cognition-lab/exploration_of_fMRI_methods_and_theory/wiki/Video-walkthrough:-MVPA
https://doi.org/10.17605/OSF.IO/UJWK6
https://nsf-cue-frameworks.github.io/www/videos.html
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so that they can go on to have successful careers in many 
areas and we can increase the diversity of students that take 
an interest in programming. 
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